如圖,菱形ABCD的邊長(zhǎng)為24厘米,∠A=60°,質(zhì)點(diǎn)P從點(diǎn)A出發(fā)沿線路ABBD作勻速運(yùn)動(dòng),質(zhì)點(diǎn)Q從點(diǎn)D同時(shí)出發(fā)沿線路DCCBBA作勻速運(yùn)動(dòng).

(1)求BD的長(zhǎng);

(2)已知質(zhì)點(diǎn)P、Q運(yùn)動(dòng)的速度分別為4厘米/秒、5厘米/秒,經(jīng)過12秒后,P、Q分別到達(dá)M、N兩點(diǎn),若按角的大小進(jìn)行分類,請(qǐng)你確定△AMN是哪一類三角形,并說明理由;

(3)設(shè)題(2)中的質(zhì)點(diǎn)P、Q分別從M、N同時(shí)沿原路返回,質(zhì)點(diǎn)P的速度不變,質(zhì)點(diǎn)Q的速度改變?yōu)閍厘米/秒,經(jīng)過3秒后,P、Q分別到達(dá)E、F兩點(diǎn),若△BEF與題(2)中的△AMN相似,試求a的值.

答案:
解析:

  (1)菱形ABCD中,AB=AD,∠A=,∴△ABD是等邊三角形.∴BD=24厘米

  (2)△AMN是直角三角形,確定理由如下:12秒后,點(diǎn)P運(yùn)動(dòng)到點(diǎn)M走過的路程為4×12=48(厘米),∵AB+BD=48厘米,

∴點(diǎn)M與點(diǎn)D重合,點(diǎn)Q運(yùn)動(dòng)到點(diǎn)N走過的路程為5×12=60(厘米),∵DC+CB+AB=60厘米

  ∴點(diǎn)N是AB的中點(diǎn),連結(jié)MN,∵AM=MB,AN=BN

  ∴MN⊥AB,∴△AMN是直角三角形

  (3)點(diǎn)P從M點(diǎn)返回3秒走過的路程為4×3=12(厘米),∵BD=12厘米

  ∴點(diǎn)E是BD的中點(diǎn),點(diǎn)Q從N點(diǎn)返回3秒走過的路程為3a厘米,∵△BEF與題(2)中的Rt△AMN相似,又∠EBF=∠A=,①若∠BFE=∠ANM=

  (Ⅰ)當(dāng)點(diǎn)F在BN上時(shí),BF=BN-FN=12-3a,(法1)∵△BEF∽△AMN

  ∴,∴,解得a=2;(法2)在Rt△BEF中.∠BEF=,∴BF=BE.∴12-3a=×12,解得a=2

  (Ⅱ)當(dāng)點(diǎn)F在BC上時(shí),BF=3a-BN=3a-12,(法1)∵△BEF∽△AMN.∴,∴,解得a=6;(法2)在Rt△BEF中,∠BEF=,∴BF=BE,∴3a-12=×12,解得a=6;②若∠BEF=∠ANM=,即點(diǎn)F與點(diǎn)C重合.此時(shí)3a=BN=+BC=36,∴3a=36,∴a=12.綜上所述,a=2或6或12.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的邊長(zhǎng)為2,∠ABC=45°,則點(diǎn)D的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的對(duì)角線AC=6,BD=8,∠ABD=α,則下列結(jié)論正確的是( 。
A、sinα=
4
5
B、cosα=
3
5
C、tanα=
4
3
D、tanα=
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的邊長(zhǎng)為6且∠DAB=60°,以點(diǎn)A為原點(diǎn)、邊AB所在的直線為x軸且頂點(diǎn)D在第一象限建立平面直角坐標(biāo)系.動(dòng)點(diǎn)P從點(diǎn)D出發(fā)沿折線DCB向終點(diǎn)B以2單位/每秒的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)沿x軸負(fù)半軸以1單位/秒的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)終點(diǎn)時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t,直線PQ交邊AD于點(diǎn)E.
(1)求出經(jīng)過A、D、C三點(diǎn)的拋物線解析式;
(2)是否存在時(shí)刻t使得PQ⊥DB,若存在請(qǐng)求出t值,若不存在,請(qǐng)說明理由;
(3)設(shè)AE長(zhǎng)為y,試求y與t之間的函數(shù)關(guān)系式;
(4)若F、G為DC邊上兩點(diǎn),且點(diǎn)DF=FG=1,試在對(duì)角線DB上找一點(diǎn)M、拋物線ADC對(duì)稱軸上找一點(diǎn)N,使得四邊形FMNG周長(zhǎng)最小并求出周長(zhǎng)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的邊長(zhǎng)為8cm,∠B=60°,P、Q同時(shí)從A點(diǎn)出發(fā),點(diǎn)P以1cm/秒的速度沿A→C→B的方向運(yùn)動(dòng),點(diǎn)Q以2cm/秒的速度沿A→B→C→D的方向運(yùn)動(dòng).當(dāng)點(diǎn)Q運(yùn)動(dòng)到D點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q運(yùn)動(dòng)的時(shí)間為x秒,△APQ與△ABC重疊部分的面積為ycm2(規(guī)定:點(diǎn)和線段是面積為0的三角形).
(1)當(dāng)x=
8
8
秒時(shí),P和Q相遇;
(2)當(dāng)x=
(12-4
3
(12-4
3
秒時(shí),△APQ是等腰直角三角形;
(3)當(dāng)x=
32
3
32
3
秒時(shí),△APQ是等邊三角形;
(4)求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,菱形ABCD的周長(zhǎng)為8cm,∠ABC:∠BAD=2:1,對(duì)角線AC、BD相交于點(diǎn)O,求BD及AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案