【題目】如圖,在長方形ABCD中,AF⊥BD于E,AF交BC于點F,連接DF,下列結(jié)論:①△ABD≌△CDB;②∠BFE=∠BDC;③S△ABE=S△DEF;④AB=6,AD=8,DB=10,則AE=4.其中正確的個數(shù)為( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
在長方形ABCD中有AB=CD,AD=CB,BD=DB,根據(jù)SSS可證△ABD≌△CDB,①正確;根據(jù)同角的余角相等可證∠BFE=∠BDC,②正確;由同底等高的三角形面積相等可得S△ABD= S△ADF,兩邊同時減去S△ADE可得S△ABE=S△DEF,③正確;根據(jù)△ABD面積的不同求法可求出AE=4.8,④錯誤,問題得解.
解:在長方形ABCD中,
∵AB=CD,AD=CB,BD=DB,
∴△ABD≌△CDB(SSS),故①正確;
∵AF⊥BD,
∴在Rt△BEF中,∠BFE+∠FBE=90°,
∵在Rt△ACD中,∠CBD+∠BDC=90°,
∴∠BFE=∠BDC,故②正確;
∵S△ABD=,S△ADF=,
∴S△ABD= S△ADF,
∴S△ABD-S△ADE = S△ADF-S△ADE,即S△ABE=S△DEF,故③正確;
∵AB=6,AD=8,DB=10,
∴S△ABD=,
∴,故④錯誤,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知長方形ABCD中,∠A=∠D=∠B=∠C=90,E是AD上的一點,F是AB上的一點,EF⊥EC,且EF=EC,DE=4cm.
(1)求證:AF=DE.
(2)若AD+DC=18,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中有兩點A(0,1),B(﹣1,0),動點P在反比例函數(shù)y=的圖象上運動,當線段PA與線段PB之差的絕對值最大時,點P的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC,∠ACB=90°,AC=5,DE⊥BD,BC=BD,∠ABE=∠CBD.
(1)求證:△ABC≌△EBD
(2)延長AC交DE于F點,若BC⊥BD,CF=4,求EF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以點M,N為圓心畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( )
①AD是∠BAC的平分線
②∠ADC=60°
③△ABD是等腰三角形
④點D到直線AB的距離等于CD的長度.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示運算程序中,若開始輸入的值為48,我們發(fā)現(xiàn)第1次輸出的結(jié)果為24,第2次輸出的結(jié)果為12,…第2017次輸出的結(jié)果為( 。
A.3B.6C.4D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABF≌△CDE.
(1)若∠B=30°,∠DCF=40°,求∠EFC的度數(shù);
(2)若BD=10,EF=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,高AD和BE所在的直線交于點H,且BH=AC,則∠ABC等于( )
A. 45° B. 120° C. 45°或135° D. 45°或120°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com