精英家教網 > 初中數學 > 題目詳情

如圖1,Rt△ABC兩直角邊的邊長為AC=1,BC=2.

(1)如圖2,⊙O與Rt△ABC的邊AB相切于點X,與邊CB相切于點Y.請你在圖2中作出并標明⊙O的圓心O;(用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)

(2)P是這個Rt△ABC上和其內部的動點,以P為圓心的⊙P與Rt△ABC的兩條邊相切.設⊙P的面積為s,你認為能否確定s的最大值?若能,請你求出s的最大值;若不能,請你說明不能確定s的最大值的理由.

 

解:(1)共2分.(標出了圓心,沒有作圖痕跡的評1分)看見垂足為Y(X)的一 條 垂 線 (或 者∠ABC的平分線)即評1分,

(2)①當⊙P與Rt△ABC的邊 AB和BC相切時,由角平分線的性質,動點P是∠ABC的平分線BM上的點.

如圖1,在∠ABC的平分線BM上任意確定點P1  (不為∠ABC的頂點),

∵ OX =BOsin∠ABM, P1Z=BP1sin∠ABM.

當 BP1>BO 時 ,P1Z>OX,即P與B的距離越大,⊙P的面積越大.

這時,BM與AC的交點P是符合題意的、BP長度最大的點. 

(3分.此處沒有證明和結論不影響后續(xù)評分)

如圖2,∵∠BPA>90°,過點P作PE⊥AB,垂足為E,則E在邊AB上.

∴以P為圓心、PC為半徑作圓,則⊙P與邊CB相切于C,與邊AB相切于E,

即這時的⊙P是符合題意的圓.(4分.此處沒有證明和結論不影響后續(xù)評分)

這時⊙P的面積就是S的最大值.

∵∠A=∠A,∠BCA=∠AEP=90°,∴ Rt△ABC∽Rt△APE,  (5分)

.

∵AC=1,BC=2,∴AB=.

設PC=x,則PA=AC-PC=1-x,  PC=PE,

, ∴x= .  (6分)

②如圖3,同理可得:當⊙P與Rt△ABC的邊AB和AC相切時,設PC=y,則 

∴y= .   (7分)

③如圖4,同理可得:當⊙P與Rt△ABC的邊BC和AC相切時,

設PF=z,則, ∴z=.     (8分)

由①,②,③可知:∵  >2,∴ +2>+1>3,

∵當分子、分母都為正數時,若分子相同,則分母越小,這個分數越大,

(或者:∵x= =2-4,y= = 5,

∴y-x=>0,∴y>x. ∵z-y=>0)

2,  (9分,沒有過程直接得出酌情扣1分)

∴ z>y>x.  ∴⊙P的面積S的最大值為.    (10分)

解析:略

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•和平區(qū)二模)如圖,在Rt△ABC中,∠BAC=90°,AB=6,AM為∠BAC的平分線,CM=2BM.下列結論:
①tan∠MAC=
2
2
;②點M到AB的距離是4;③
AC
CM
=
BC
CA
;④∠B=2∠C;⑤
CM
AB
=
2
,
其中不正確結論的序號是
①③④⑤
①③④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•遵義)如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,E為BC邊上的一點,以A為圓心,AE為半徑的圓弧交AB于點D,交AC的延長于點F,若圖中兩個陰影部分的面積相等,則AF的長為
2
π
π
2
π
π
(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=9cm,則AB的長為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于點D,DE⊥DB交AB于點E,設⊙O是△BDE的外接圓.
(1)求證:AC是⊙O的切線;
(2)若DE=2,BD=4,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•嘉定區(qū)二模)如圖,在Rt△ABC中,∠ACB=90°,點D在AC邊上,且BC2=CD•CA.
(1)求證:∠A=∠CBD;
(2)當∠A=α,BC=2時,求AD的長(用含α的銳角三角比表示).

查看答案和解析>>

同步練習冊答案