【題目】已知M(2)=(-2)×(-2),
M(3)=(-2)×(-2)×(-2),
…,
M(n)= .
(1)計算:M(5)+M(6);
(2)求2M(2 016)+M(2 017)的值;
(3)說明2M(n)與M(n+1)互為相反數(shù).
【答案】 (1) 32;(2) 0;(3) 詳見解析.
【解析】試題分析:(1)由題意可得M(5)= (-2)5, M(6)= (-2)6,根據(jù)乘方的定義進行計算即可;(2)由題意可得M(2 016)= (-2)2016, M(2017)= (-2)2017,根據(jù)同底數(shù)冪的乘法法則計算后合并即可;(3)類比(2)的方法計算2M(n)+M(n+1)的值,若值為0,則2M(n)與M(n+1)互為相反數(shù),若值不等于0,則2M(n)與M(n+1)不互為相反數(shù).
試題解析:
(1)M(5)+M(6)=(-2)5+(-2)6=-32+64=32.
(2)2M(2 016)+M(2 017)=2×(-2)2 016+(-2)2 017=2×22 016-22 017=22 017-22 017=0.
(3)因為2M(n)+M(n+1)=-(-2)×(-2)n+(-2)n+1=-(-2)n+1+(-2)n+1=0,所以2M(n)與M(n+1)互為相反數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設(shè)CD的長為x,四邊形ABCD的面積為y,求y與x之間的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若A是一個七次多項式,B也是一個七次多項式,則A+B一定是( )
A.不高于七次多項式或單項式
B.七次多項式
C.十四次多項式
D.六次多項式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交⊙O于點E,∠BAC=45度.給出以下五個結(jié)論:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣弧DE的2倍;⑤AE=BC.其中正確結(jié)論的序號是( 。
A. ①②③ B. ①②④ C. ①②⑤ D. ①②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點,AD=AB,AD,BC的延長線相交于點E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE;
(3)若∠CDE=30°,OB=2,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人利用撲克牌玩“10點”游戲,游戲規(guī)則如下:
①將牌面數(shù)字作為“點數(shù)”,如紅桃6的“點數(shù)”就是6(牌面點數(shù)與牌的花色無關(guān));
②兩人摸牌結(jié)束時,將所得牌的“點數(shù)”相加,若“點數(shù)”之和小于或等于10,此時“點數(shù)”之和就是“最終點數(shù)”,若“點數(shù)”之和大于10,則“最終點數(shù)”是0;
③游戲結(jié)束之前雙方均不知道對方“點數(shù)”;
④判定游戲結(jié)果的依據(jù)是:“最終點數(shù)”大的一方獲勝,“最終點數(shù)”相等時不分勝負.
現(xiàn)甲、乙均各自摸了兩張牌,數(shù)字之和都是5,這時桌上還有四張背面朝上的撲克牌,牌面數(shù)字分別是4,5,6,7.
(1)若甲從桌上繼續(xù)摸一張撲克牌,乙不再摸牌,則甲獲勝的概率為 ;
(2)若甲先從桌上繼續(xù)摸一張撲克牌,接著乙從剩下的撲克牌中摸出一張牌,然后雙方不再摸牌,請用樹狀圖或表格表示出這次摸牌后所有可能的結(jié)果,再列表呈現(xiàn)甲、乙的“最終點數(shù)”,并求乙獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=kx+b(k≠0)與雙曲線y= 的一個交點為P(2,m),與x軸、y軸分別交于點A,B.
(1)求m的值;
(2)若S△AOP=2S△AOB , 求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com