【題目】如圖,直角梯形ABCD中,∠BAD=∠CDA=90°,AB=,CD=2,過A,B,D三點(diǎn)的☉O分別交BC,CD于點(diǎn)E,M,且CE=2,下列結(jié)論:①DM=CM;②弧AB=弧EM;③☉O的直徑為2;④AE=.其中正確的結(jié)論是( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
【答案】B
【解析】
連接BD,BM,AM,EM,DE,利用三個角為直角的四邊形為矩形得到ABMD為矩形,利用矩形的對邊相等得到AB=DM,進(jìn)而可證明DM=CM,故選項(xiàng)①正確;在Rt△DEC中,由M為CD的中點(diǎn),利用斜邊上的中線等于斜邊的一半得到DM與EM相等,從而AB=EM,所以弧AB=弧EM,故選項(xiàng)②正確;先證明四邊形AMCB為平行四邊形,可得出AM=BC,等量代換得到BC=BD,由BD為圓的直徑,可得△DEC為直角三角形,利用勾股定理可求出DE的長,設(shè)BE=x,則BD=BC=BE+EC=x+2,在Rt△BDE中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出BC的長,即為BD的長,確定出圓的直徑,即可對于選項(xiàng)③作出判斷;在Rt△AEM中,由AM與ME的長,利用勾股定理求出AE的長,即可對于選項(xiàng)④作出判斷.
連接BD,BM,AM,EM,DE,
∵∠BAD=90°,
∴BD為圓的直徑,
∴∠BMD=90°,
∴∠BAD=∠CDA=∠BMD=90°,
∴四邊形ABMD矩形,
∴AB=DM,
又∵CD=2AB,
∴CD=2DM,即DM=MC;
故選項(xiàng)①正確;
在Rt△DEC中,M是DC中點(diǎn),
∴EM=DM=CD=,
∴弧EM=弧DM,
又∵AB=DM,
∴弧AB=弧DM,
∴弧AB=弧EM,
故選項(xiàng)②正確;
∵AB∥MC,AB=MC,
∴四邊形ABCM是平行四邊形,
∴AM=BC,又BD=AM,
∴BD=BC,
∵BD是直徑,
∴∠BED=90°,即∠DEC=90°,
又EC=2,DC=2,
根據(jù)勾股定理得:DE==2,
設(shè)BE=x,BD=BC=BE+EC=x+2,
在Rt△BDE中,根據(jù)勾股定理得:BE2+DE2=BD2,即x2+20=(x+2)2,
解得:x=4,
∴BD=6,故選項(xiàng)③錯誤;
在Rt△AEM中,AM=6,EM=,
根據(jù)勾股定理得:AE==;
故選項(xiàng)④正確;
則正確的選項(xiàng)為:①②④.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=6.將該矩形紙片剪去3個等腰直角三角形,所有剪法中剩余部分面積的最小值是( )
A. 6 B. 3 C. 2.5 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程x2-px-2q=0(p,q是正整數(shù)),若它的正根小于或等于4,則正根是整數(shù)的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知不在同一條直線上的三點(diǎn)、、,其中,且.
(1)按下列要求作圖(用尺規(guī)作圖,保留作圖痕跡)
①作射線;
②在線段上截取;
③在線段上截取.
恭喜您!通過剛才的動手操作畫圖,你作出了聞名世界的“黃金分割點(diǎn)”.像這樣點(diǎn)就稱為線段的“黃金分割點(diǎn)”.
(2)閱讀下面材料,并完成相關(guān)問題;
黃金分割點(diǎn)是指把一條線段分割為兩部分,使其中一部分的長約是全長的0.618倍,則稱這個點(diǎn)為黃金分割點(diǎn).如圖,為線段上一點(diǎn),如果,那么點(diǎn)為線段的黃金分割點(diǎn).
已知某舞臺的寬為30米,一次演出時(shí)兩位主持人分別站在舞臺上的兩個黃金分割點(diǎn)和處,如圖,則這兩位主持人之間的距離約為_________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題
(1)元旦期間,“茂業(yè)“商場對某品牌羽絨服實(shí)行七折銷售,張阿姨到該商場購買了一件該品牌的羽絨服發(fā)現(xiàn)比不打折時(shí)可省下240元,那么該品牌的標(biāo)價(jià)是多少元?
(2)某公司共有工人40人,已知一個工人每小時(shí)可制造10個種零件或20個種零件,每個工人能而且只能制造其中的一種零件.
①如果這些工人每小時(shí)能制造、兩種零件共550個,請問其中參加制造種零件的工人有多少人?
②如果1個種零件與3個種零件組合后能形成一個整件,為使這些工人每小時(shí)制造出的零件都能恰好組合成整件,那么應(yīng)安排多少工人制造種零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是等邊內(nèi)一點(diǎn)將繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)得,連接已知.
求證:是等邊三角形;
當(dāng)時(shí),試判斷的形狀,并說明理由;
探究:當(dāng)為多少度時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)前,安徽黃山腳下的小村莊的集市上,人山人海,還有人在擺“摸彩”游戲,只見他手拿一個黑色的袋子,內(nèi)裝大小、形狀、質(zhì)量完全相同的白球20只,且每一個球上都寫有號碼(1~20號)和1只紅球,規(guī)定:每次只摸一只球.摸前交1元錢且在1~20內(nèi)寫一個號碼,摸到紅球獎5元,摸到號碼數(shù)與你寫的號碼相同獎10元.
(1)你認(rèn)為該游戲?qū)?/span>“摸彩”者有利嗎?說明你的理由.
(2)若一個“摸彩”者多次摸獎后,他平均每次將獲利或損失多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在直角坐標(biāo)系xOy中,點(diǎn)A,點(diǎn)B坐標(biāo)分別為(﹣1,0),(0, ),連結(jié)AB,OD由△AOB繞O點(diǎn)順時(shí)針旋轉(zhuǎn)60°而得.
(1)求點(diǎn)C的坐標(biāo);
(2)△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°所掃過的面積;
(3)線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A(﹣, 0),點(diǎn)B(2,0),與y軸交于點(diǎn)C(0,1),連接BC.
(1)求拋物線的解析式;
(2)N為拋物線上的一個動點(diǎn),過點(diǎn)N作NP⊥x軸于點(diǎn)P,設(shè)點(diǎn)N的橫坐標(biāo)為t(﹣<t<2),求△ABN的面積s與t的函數(shù)解析式;
(3)若0<t<2且t≠0時(shí),△OPN∽△COB,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com