(2012•柳州)右表反映了x與y之間存在某種函數(shù)關(guān)系,現(xiàn)給出了幾種可能的函數(shù)關(guān)系式:
y=x+7,y=x-5,y=-
6
x
,y=
1
3
x-1
x -6 -5 3 4
y 1 1.2 -2 -1.5
(1)從所給出的幾個式子中選出一個你認為滿足上表要求的函數(shù)表達式:
y=-
6
x
y=-
6
x
;
(2)請說明你選擇這個函數(shù)表達式的理由.
分析:(1)根據(jù)表中列出的x與y的對應關(guān)系判斷出各點所在的象限,再根據(jù)所給的幾個函數(shù)關(guān)系式即可得出結(jié)論;
(2)根據(jù)(1)中的判斷寫出理由即可.
解答:解:(1)∵由表中所給的x、y的對應值的符號均相反,
∴所給出的幾個式子中只有y=-
6
x
符合條件,
故答案為:y=-
6
x
;

(2)∵由表中所給的x、y的對應值的符號均相反,
∴此函數(shù)圖象在二、四象限,
∵xy=(-6)×1=(-5)×1.2=-6,
∴所給出的幾個式子中只有y=-
6
x
符合條件.
點評:本題考查的是反比例函數(shù)的性質(zhì)及一次函數(shù)的性質(zhì),先根據(jù)表中xy的對應值判斷出函數(shù)圖象所在的象限是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•柳州)如圖,在△ABC中,AB=2,AC=BC=
5

(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標系如圖,請你分別寫出A、B、C三點的坐標;
(2)求過A、B、C三點且以C為頂點的拋物線的解析式;
(3)若D為拋物線上的一動點,當D點坐標為何值時,S△ABD=
1
2
S△ABC
(4)如果將(2)中的拋物線向右平移,且與x軸交于點A′B′,與y軸交于點C′,當平移多少個單位時,點C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).
 
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當x1=1時,即y2=1,∴y1=1,y2=-1.
當x2=3,即y2=3,∴y3=
3
,y4=-
3

所以,原方程的解是y1=1,y2=-1,y3=
3
,y4=-
3

再如x2-2=4
x2-2
,可設y=
x2-2
,用同樣的方法也可求解.

查看答案和解析>>

同步練習冊答案