已知:△ABC和△ADE是兩個(gè)不全等的等腰直角三角形,其中BA=BC,DA=DE,連接EC,取EC的中點(diǎn)M,連接BM和DM.
(1)如圖1,如果點(diǎn)D、E分別在邊AC、AB上,那么BM、DM的數(shù)量關(guān)系與位置關(guān)系是______;
(2)將圖1中的△ADE繞點(diǎn)A旋轉(zhuǎn)到圖2的位置時(shí),判斷(1)中的結(jié)論是否仍然成立,并說明理由.

【答案】分析:(1)利用直角三角形斜邊上的中線等于斜邊的一半得出BM=DM=EC,再利用∠1=∠2,∠3=∠4,∠BMD=2(∠1+∠3),即可得出答案;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)首先得出∠8=∠BAD,再利用SAS證明△ABD≌△CBF,進(jìn)而得出BD=BF,∠ABD=∠CBF,∠DBF=∠ABC=90°,即可得出BM與DM的位置關(guān)系及數(shù)量關(guān)系.
解答:解:(1)∵M(jìn)是EC的中點(diǎn),
∴BM=EC,DM=EC,(直角三角形斜邊上的中線等于斜邊的一半),
∴DM=BM.
∵M(jìn)是EC的中點(diǎn),
∴MC=EC,
∴BM=MC=DM,
∴∠1=∠2,∠3=∠4,
∵∠BME=∠1+∠2,∠EMD=∠3+∠4,
∴∠BMD=2(∠1+∠3),
∵△ABC等腰直角三角形,
∴∠BCA=45°,
∴∠BMD=90°,
∴BM=DM且BM⊥DM;
故答案為:BM=DM且BM⊥DM.

(2)成立. 
理由如下:延長DM至點(diǎn)F,使MF=MD,連接CF、BF、BD.
在△EMD和△CMF中,

∴△EMD≌△CMF(SAS),
∴ED=CF,∠DEM=∠1.
∵AB=BC,AD=DE,且∠ADE=∠ABC=90°,
∴∠2=∠3=45°,∠4=∠5=45°.
∴∠BAD=∠2+∠4+∠6=90°+∠6.
∵∠8=360°-∠5-∠7-∠1,∠7=180°-∠6-∠9,
∴∠8=360°-45°-(180°-∠6-∠9)-(∠3+∠9),
=360°-45°-180°+∠6+∠9-45°-∠9=90°+∠6.
∴∠8=∠BAD.
在△ABD和△CBF中,

∴△ABD≌△CBF(SAS),
∴BD=BF,∠ABD=∠CBF.
∴∠DBF=∠ABC=90°.
∵M(jìn)F=MD,
∴BM=DM且BM⊥DM.
點(diǎn)評:此題主要考查了全等三角形的判定與性質(zhì)以及圖形的旋轉(zhuǎn),正確利用全等三角形的判定得出△ABD≌△CBF是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)M是BE的中點(diǎn),連接CM.當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上時(shí)(如圖一),連接DM,可得結(jié)論:DC=
2
CM.將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)D在AC上(如圖二)或當(dāng)點(diǎn)E在BA的延長線上(如圖三)時(shí),請你猜想DC與CM有怎樣的數(shù)量關(guān)系,并選擇一種情況加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC和△DBE均為等腰直角三角形.如圖(1),易證AD=CE且AD⊥CE.
(1)將△DBE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)至圖(2)的位置時(shí),線段AD和CE有怎樣的關(guān)系?
(2)將△DBE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)至圖(3)的位置時(shí),線段AD和CE又有怎樣的關(guān)系?
請直接寫出你的猜想,并選擇其一加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,△ABC和△CDE都是等邊三角形,且點(diǎn)B,C,D在同一條直線上.求證:BE=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1),已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)說明△ABC≌△FED的理由;
(2)若圖形經(jīng)過平移和旋轉(zhuǎn)后得到圖(2),且有∠EDB=25°,∠A=66°,試求∠AMD的度數(shù);
(3)將圖形繼續(xù)旋轉(zhuǎn)后得到圖(3),此時(shí)D、B、F三點(diǎn)在同一條直線上,若DB=2DF,連接EB,已知△EFB的面積為4cm2,那么四邊形ABED的面積=
12
12
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

6、已知,△ABC和△A'B'C'中,∠C=∠C'=90°,AC=A'C',要判定△ABC≌△A'B'C'可以添加條件
AB=A′B′
∠A=∠A′
∠B=∠B′
BC=B′C′

查看答案和解析>>

同步練習(xí)冊答案