【題目】如圖,一種某小區(qū)的兩幢10層住宅樓間的距離為AC=30m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3m.假設(shè)某一時刻甲樓在乙樓側(cè)面的影長EC=h,太陽光線與水平線的夾角為α.
(1)用含α的式子表示h(不必指出α的取值范圍);
(2)當(dāng)α=30°時,甲樓樓頂B點(diǎn)的影子落在乙樓的第幾層?若α每小時增加15°,從此時起幾小時后甲樓的影子剛好不影響乙樓采光?
【答案】
(1)解:過點(diǎn)E作EH⊥AB于H,由題意四邊形ACEH是矩形,
∴EH=AC=30,AH=CE=h,∠BEH=α,
∴BH=30﹣h,
在Rt△BEH中,tan∠BEH= ,
∴30﹣h=30tanα,
∴h=30﹣30tanα.
(2)解:當(dāng)α=30°時,h=30﹣30× ≈12.7,
∵12.7÷3=4.2,
∴B點(diǎn)的影子落在乙樓的第五層,
當(dāng)B點(diǎn)的影子落在乙樓C處時,甲樓的影子剛好不影響乙樓采光,
此時AB=AC=30,△ABC是等腰直角三角形,
∴∠ACB=45°,
∴ =1(小時),
∴從此時起1小時后甲樓的影子剛好不影響乙樓采光.
【解析】(1)過點(diǎn)E作EH⊥AB于H,由題意四邊形ACEH是矩形,在Rt△BEH中,根據(jù)tan∠BEH= 列出方程即可解決問題.(2)①求出h的值即可解決問題,②求出∠ACB的大小即可解決問題.
【考點(diǎn)精析】利用平行投影對題目進(jìn)行判斷即可得到答案,需要熟知太陽光線可以看成是平行光線,平行光線所形成的投影稱為平行投影;作物體的平行投影:由于平行投影的光線是平行的,而物體的頂端與影子的頂端確定的直線就是光線,故根據(jù)另一物體的頂端可作出其影子.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為促進(jìn)我市經(jīng)濟(jì)的快速發(fā)展,加快道路建設(shè),某高速公路建設(shè)工程中需修隧道AB,如圖,在山外一點(diǎn)C測得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長.(參考數(shù)據(jù):sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了改善辦學(xué)條件,計劃購置一批實(shí)物投影儀和一批臺式電腦,經(jīng)投標(biāo),購買1臺實(shí)物投影儀和2臺電腦共用了11000元;購買2臺實(shí)物投影儀和3臺電腦共用了18000元.
(1)求購買1臺實(shí)物投影儀和1臺電腦各需多少元?
(2)根據(jù)該校實(shí)際情況,需購買實(shí)物投影儀和臺式電腦的總數(shù)為50臺,要求購買的總費(fèi)用不超過180000元,該校最多能購買多少臺電腦?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實(shí)數(shù)b的取值范圍是( )
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD,點(diǎn)M從點(diǎn)A出發(fā)以每秒1個單位長度的速度向點(diǎn)B運(yùn)動,點(diǎn)N從點(diǎn)A出發(fā)以每秒3個單位長度的速度沿A→D→C→B的路徑向點(diǎn)B運(yùn)動,當(dāng)一個點(diǎn)到達(dá)點(diǎn)B時,另一個點(diǎn)也隨之停止運(yùn)動,設(shè)△AMN的面積為s,運(yùn)動時間為t秒,則能大致反映s與t的函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D在△ABC的BC邊上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求證:AE=DF;
(2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB切⊙O于點(diǎn)B,OA=2,∠OAB=30°,弦BC∥OA,劣弧 的弧長為 . (結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=2x+2的圖象與y軸交于點(diǎn)B,與反比例函數(shù)y= 的圖象的一個交點(diǎn)為A(1,m).過點(diǎn)B作AB的垂線BD,與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)D(n,﹣2).
(1)求k1和k2的值;
(2)若直線AB、BD分別交x軸于點(diǎn)C、E,試問在y軸上是否存在一個點(diǎn)F,使得△BDF∽△ACE?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com