(2009•遵義)如圖,在△ABC中,M、N分別為AB、AC邊上的中點.D、E為BC邊上的兩點,且DE=BD+EC,ME與ND交于點O,請你寫出圖中一對全等的三角形,并加以證明.
【答案】分析:因為M、N分別為AB、AC邊上的中點,∠A=∠A,可證明△AMN∽△ABC,則MN∥BC,又因為DE=BD+EC,所以有△MON≌△EOD.
解答:解:△MON≌△EOD.
證明:∵M、N分別為AB、AC邊上的中點,
∴AM:AB=1:2,AN:AC=1:2.
∵∠A=∠A,
∴△AMN∽△ABC.
∴∠AMN=∠ABC,MN=BC.
∴MN∥BC.
∴∠OMN=∠OED,∠ONM=∠ODE.
∵DE=BD+EC,
∴DE=BC.
∴MN=DE.
∴△MON≌△DOE.
點評:三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•遵義)如圖,在平面直角坐標系中,矩形OABC的頂點坐標為O(0,0),A(2,0),B(2,2),把矩形OABC繞點O逆時針方向旋轉(zhuǎn)α度,使點B正好落在y軸正半軸上,得到矩形OA1B1C1
(1)求角α的度數(shù);
(2)求直線A1B1的函數(shù)關(guān)系式,并判斷直線A1B1是否經(jīng)過點B,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年貴州省遵義市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•遵義)如圖,在平面直角坐標系中,矩形OABC的頂點坐標為O(0,0),A(2,0),B(2,2),把矩形OABC繞點O逆時針方向旋轉(zhuǎn)α度,使點B正好落在y軸正半軸上,得到矩形OA1B1C1
(1)求角α的度數(shù);
(2)求直線A1B1的函數(shù)關(guān)系式,并判斷直線A1B1是否經(jīng)過點B,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年貴州省遵義市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•遵義)如圖,點P、Q、R是反比例函數(shù)y=的圖象上任意三點,PA⊥y軸于點A,QB⊥x軸于點B,QC⊥x軸于點C,S1,S2,S3分別表示△OAP,△OBQ,△OCR的面積,則S1:S2:S3的大小關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年貴州省遵義市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•遵義)如圖,在Rt△ABC中,∠C=90°,AC+BC=2,S△ABC=1,則斜邊AB的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年貴州省遵義市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•遵義)如圖是正方形的表面展開圖,每個面上有一個數(shù)且正方體表面相對的兩個面上的數(shù)互為相反數(shù),則a+b-c的值為( )

A.-4
B.-2
C.2
D.6

查看答案和解析>>

同步練習(xí)冊答案