【題目】如圖,已知在△ABC中,CD⊥AB于點(diǎn)D,BD=9,BC=15,AC=20.
(1)求CD的長;
(2)求AB的長;
(3)判斷△ABC的形狀.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C、E分別在直線AB、DF上,小華想知道∠ACE和∠DEC是否互補(bǔ),但是他沒有帶量角器,只帶了一副三角板,于是他想了這樣一個(gè)辦法:首先連結(jié)CF,再找出CF的中點(diǎn)O,然后連結(jié)EO并延長EO和直線AB相交于點(diǎn)B,經(jīng)過測量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BC=EF.小華的想法對(duì)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,菱形ABCD,分別延長AB,CB到點(diǎn)F,E,使得BF=BA,BE=BC,連接AE,EF,F(xiàn)C,CA.
(1)求證:四邊形AEFC為矩形;
(2)連接DE交AB于點(diǎn)O,如果DE⊥AB,AB=4,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,按下列步驟作圖:①以點(diǎn)B為圓心,適當(dāng)長為半徑畫弧,與AB,BC分別交于點(diǎn)D,E;②分別以D,E為圓心,大于 DE的長為半徑畫弧,兩弧交于點(diǎn)P;③作射線BP交AC于點(diǎn)F;④過點(diǎn)F作FG⊥AB于點(diǎn)G.下列結(jié)論正確的是( )
A. CF=FG B. AF=AG C. AF=CF D. AG=FG
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).△ABC的邊BC在x軸上,A、C兩點(diǎn)的坐標(biāo)分別為A(0,m)、C(n,0),B(-5,0),且,點(diǎn)P從B出發(fā),以每秒2個(gè)單位的速度沿射線BO勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒.
(1)求A、C兩點(diǎn)的坐標(biāo);
(2)連接PA,用含t的代數(shù)式表示△POA的面積;
(3)當(dāng)P在線段BO上運(yùn)動(dòng)時(shí),在y軸上是否存在點(diǎn)Q,使△POQ與△AOC全等?若存在,請(qǐng)求出t的值并直接寫出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1㎝/秒的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2㎝/秒的速度移動(dòng).()
(1)如果ts秒時(shí),PQ//AC,請(qǐng)計(jì)算t的值.
(2)如果ts秒時(shí),△PBQ的面積等于S㎝2,用含t的代數(shù)式表示S.
(3)PQ能否平分△ABC的周長?如果能,請(qǐng)計(jì)算出t值,不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com