【題目】如圖,已知在ABC中,CDAB于點(diǎn)D,BD=9,BC=15,AC=20.

(1)求CD的長;

(2)求AB的長;

(3)判斷ABC的形狀.

【答案】(1)CD長為12;(2)AB的長為25;(3)ABC是直角三角形

【解析】解: (1)在BCD中,CDAB,BD2CD2BC2CD2BC2BD2=152-92=144.CD=12.

(2)在ACD中,CDAB,CD2AD2AC2AD2AC2CD2=202-122=256.AD=16.ABADBD=16+9=25.

(3)BC2AC2=152+202=625,AB2=252=625,AB2BC2AC2ABC是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C、E分別在直線AB、DF上,小華想知道∠ACE和∠DEC是否互補(bǔ),但是他沒有帶量角器,只帶了一副三角板,于是他想了這樣一個(gè)辦法:首先連結(jié)CF,再找出CF的中點(diǎn)O,然后連結(jié)EO并延長EO和直線AB相交于點(diǎn)B,經(jīng)過測量,他發(fā)現(xiàn)EOBO,因此他得出結(jié)論:∠ACE和∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BCEF.小華的想法對(duì)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)B,E分別在AC,DF上,BD,CE均與AF相交,∠1=2,C=D,求證:∠A=F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,菱形ABCD,分別延長AB,CB到點(diǎn)F,E,使得BF=BA,BE=BC,連接AE,EF,F(xiàn)C,CA.

(1)求證:四邊形AEFC為矩形;

(2)連接DEAB于點(diǎn)O,如果DEAB,AB=4,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,按下列步驟作圖:以點(diǎn)B為圓心,適當(dāng)長為半徑畫弧,與AB,BC分別交于點(diǎn)D,E;②分別以D,E為圓心,大于 DE的長為半徑畫弧,兩弧交于點(diǎn)P;③作射線BPAC于點(diǎn)F;④過點(diǎn)FFG⊥AB于點(diǎn)G.下列結(jié)論正確的是(  )

A. CF=FG B. AF=AG C. AF=CF D. AG=FG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BO、CO分別平分∠ABC、ACB.若∠BOC=110°,則∠A=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).ABC的邊BCx軸上,A、C兩點(diǎn)的坐標(biāo)分別為A0m)、Cn0),B-5,0),且,點(diǎn)PB出發(fā),以每秒2個(gè)單位的速度沿射線BO勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒.

1)求A、C兩點(diǎn)的坐標(biāo);

2)連接PA,用含t的代數(shù)式表示POA的面積;

3)當(dāng)P在線段BO上運(yùn)動(dòng)時(shí),在y軸上是否存在點(diǎn)Q,使POQAOC全等?若存在,請(qǐng)求出t的值并直接寫出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B1/秒的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C2/秒的速度移動(dòng).(

1)如果ts秒時(shí),PQ//AC,請(qǐng)計(jì)算t的值.

2)如果ts秒時(shí),△PBQ的面積等于S2,用含t的代數(shù)式表示S

3PQ能否平分△ABC的周長?如果能,請(qǐng)計(jì)算出t值,不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=ACAC上的中線BD把三角形的周長分為24㎝和30㎝的兩個(gè)部分,求三角形的三邊長.

查看答案和解析>>

同步練習(xí)冊答案