【題目】二次函數(shù)y=x2+1的圖象的頂點(diǎn)坐標(biāo)是

【答案】(0,1)
【解析】解:二次函數(shù)y=x2+1的圖象的頂點(diǎn)坐標(biāo)是(0,1). 所以答案是:(0,1).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.

求證:
(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:只有一組對(duì)角是直角的四邊形叫做損矩形,連接它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑,即損矩形外接圓的直徑.如圖,ABC中,ABC=90°,以AC為一邊向形外作菱形ACEF,點(diǎn)D是菱形ACEF對(duì)角線的交點(diǎn),連接BD.若DBC=60°,ACB=15°,BD=,則菱形ACEF的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】絕對(duì)值小于4的所有整數(shù)的和是( )
A.4
B.8
C.0
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀:如圖1,點(diǎn)P(x,y)在平面直角坐標(biāo)中,過(guò)點(diǎn)P作PA⊥x軸,垂足為A,將點(diǎn)P繞垂足A順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)得到對(duì)應(yīng)點(diǎn)P′,我們稱點(diǎn)P到點(diǎn)P′的運(yùn)動(dòng)為傾斜α運(yùn)動(dòng).例如:點(diǎn)P(0,2)傾斜30°運(yùn)動(dòng)后的對(duì)應(yīng)點(diǎn)為P′(1,).

圖形E在平面直角坐標(biāo)系中,圖形E上的所有點(diǎn)都作傾斜α運(yùn)動(dòng)后得到圖形E′,這樣的運(yùn)動(dòng)稱為圖形E的傾斜α運(yùn)動(dòng).

理解

(1)點(diǎn)Q(1,2)傾斜60°運(yùn)動(dòng)后的對(duì)應(yīng)點(diǎn)Q′的坐標(biāo)為 ;

(2)如圖2,平行于x軸的線段MN傾斜α運(yùn)動(dòng)后得到對(duì)應(yīng)線段M′N′,M′N′與MN平行且相等嗎?說(shuō)明理由.

應(yīng)用:(1)如圖3,正方形AOBC傾斜α運(yùn)動(dòng)后,其各邊中點(diǎn)E,F(xiàn),G,H的對(duì)應(yīng)點(diǎn)E′,F(xiàn)′,G′,H′構(gòu)成的四邊形是什么特殊四邊形: ;

(2)如圖4,已知點(diǎn)A(0,4),B(2,0),C(3,2),將△ABC傾斜α運(yùn)動(dòng)后能不能得到Rt△A′B′C′,且∠A′C′B′為直角,其中點(diǎn)A′,B′,C′為點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn).請(qǐng)求出cosα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上,點(diǎn)B表示-11,點(diǎn)A表示10,那么離開(kāi)原點(diǎn)較遠(yuǎn)的是 點(diǎn)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x=﹣1是關(guān)于x的方程2x2+ax﹣a2=0的一個(gè)根,則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是( 。

A. (a+2)(a﹣2)=a2﹣2 B. (a+1)(a﹣2)=a2+a﹣2

C. (a+b)2=a2+b2 D. (a﹣b)2=a2﹣2ab+b2

查看答案和解析>>

同步練習(xí)冊(cè)答案