如圖,AB∥CD,∠1=∠B,∠2=∠D,運用所學知識說明BE⊥DE.

證明:過E點作EF∥AB,則∠B=∠3,
又∵∠1=∠B,
∴∠1=∠3.
∵AB∥EF,AB∥CD,
∴EF∥CD,
∴∠4=∠D,
又∵∠2=∠D,
∴∠2=∠4,
∵∠1+∠2+∠3+∠4=180°,
∴∠3+∠4=90°即∠BED=90°,
∴BE⊥ED.
分析:過E點作EF∥AB,根據(jù)平行線的性質得出∠B=∠3,結合已知條件∠1=∠B得出∠1=∠3.根據(jù)平行于同一直線的兩直線平行得出EF∥CD,由平行線的性質及已知條件∠2=∠D得出∠2=∠4,再根據(jù)平角的定義得出∠1+∠2+∠3+∠4=180°,則∠BED=90°.
點評:本題考查了平行線的判定與性質,垂線的定義,平角的定義,難度適中,正確作出輔助線是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、如圖,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中點.求證:CE⊥BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,AB∥CD,AD與BC相交于點E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,AB∥CD,∠C=80°,∠CAD=60°,則∠BAD的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

34、如圖,AB∥CD,P是BC上的一個動點,設∠CDP=∠1,∠CPD=∠2,請你猜想出∠1、∠2與∠B之間的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB∥CD,∠1=58°,則∠2的度數(shù)是( 。

查看答案和解析>>

同步練習冊答案