拋物線y=ax2+bx+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C,對稱軸為直線x=1.且A、C兩點(diǎn)的坐標(biāo)分別精英家教網(wǎng)為A(-1,0),C(0,-3).
(1)求拋物線y=ax2+bx+c的解析式;
(2)在對稱軸上是否存在一個點(diǎn)P,使△PAC的周長最。咳舸嬖,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
分析:(1)根據(jù)對稱軸和A點(diǎn)的坐標(biāo)求得B點(diǎn)的坐標(biāo),用待定系數(shù)法求函數(shù)的解析式即可;
(2)利用點(diǎn)A和點(diǎn)B關(guān)于對稱軸對稱,求得線段BC所在直線的解析式后再求出此直線與對稱軸的交點(diǎn)坐標(biāo)即可.
解答:精英家教網(wǎng)解:(1)∵A、B兩點(diǎn)關(guān)于x=1對稱,且A(-1,0),
∴B點(diǎn)坐標(biāo)為(3,0),
根據(jù)題意得:
0=9a+3b+c
0=a-b+c
-3=c

解得a=1,b=-2,c=-3.
∴拋物線的解析式為y=x2-2x-3;

(2)存在一個點(diǎn)P,使△PAC的周長最。
A點(diǎn)關(guān)于x=1對稱點(diǎn)B的坐標(biāo)為(3,0),
設(shè)直線BC的解析式為y=kx+b
3k+b=0
b=-3

∴k=1,b=-3,
即BC的解析式為y=x-3.
當(dāng)x=1時,y=-2,
∴P點(diǎn)坐標(biāo)為(1,-2).
點(diǎn)評:本題考查了函數(shù)綜合知識,函數(shù)綜合題是初中數(shù)學(xué)中覆蓋面最廣、綜合性最強(qiáng)的題型.近幾年的中考壓軸題多以函數(shù)綜合題的形式出現(xiàn).解決函數(shù)綜合題的過程就是轉(zhuǎn)化思想、數(shù)形結(jié)合思想、分類討論思想、方程思想的應(yīng)用過程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(2,8)在拋物線y=ax2上,則a的值為( 。
A、±2
B、±2
2
C、2
D、-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸的負(fù)半軸相交于D.
(1)若拋物線y=ax2+bx+c經(jīng)過B、C、D三點(diǎn),求此拋物線的解析式,并寫出拋物線與圓A的另一個交點(diǎn)E的坐標(biāo);
(2)若動直線MN(MN∥x軸)從點(diǎn)D開始,以每秒1個長度單位的速度沿y軸的正方向移動,且與線段CD、y軸分別交于M、N兩點(diǎn),動點(diǎn)P同時從點(diǎn)C出發(fā),在線段OC上以每秒2個長度單位的速度向原點(diǎn)O運(yùn)動,連接PM,設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的條件下,若以P、C、M為頂點(diǎn)的三角形與△OCD相似,求實數(shù)t的值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若(2,0)、(4,0)是拋物線y=ax2+bx+c上的兩個點(diǎn),則它的對稱軸是直線( 。
A、x=0B、x=1C、x=2D、x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),拋物線y=ax2+bx經(jīng)過點(diǎn)A(6,0),且頂點(diǎn)B(m,6)在直線y=2x上.
(1)求m的值和拋物線y=ax2+bx的解析式;
(2)如在線段OB上有一點(diǎn)C,滿足OC=2CB,在x軸上有一點(diǎn)D(10,0),連接DC,且直線DC與y軸交于點(diǎn)E.
①求直線DC的解析式;
②如點(diǎn)M是直線DC上的一個動點(diǎn),在x軸上方的平面內(nèi)有另一點(diǎn)N,且以O(shè)、E、M、N為頂點(diǎn)的四邊形是菱形,請求出點(diǎn)N的坐標(biāo).(直接寫出結(jié)果,不需要過程.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是
等腰
等腰
三角形;
(2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
(3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點(diǎn)O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案