【題目】如圖,在△ABC中,AB=5,AC=9,S△ABC= ,動點P從A點出發(fā),沿射線AB方向以每秒5個單位的速度運動,動點Q從C點出發(fā),以相同的速度在線段AC上由C向A運動,當Q點運動到A點時,P、Q兩點同時停止運動,以PQ為邊作正方形PQEF(P、Q、E、F按逆時針排序),以CQ為邊在AC上方作正方形QCGH.
(1)求tanA的值;
(2)設(shè)點P運動時間為t,正方形PQEF的面積為S,請?zhí)骄縎是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由;
(3)當t為何值時,正方形PQEF的某個頂點(Q點除外)落在正方形QCGH的邊上,請直接寫出t的值.
【答案】
(1)
解:如圖1,過點B作BM⊥AC于點M,
∵AC=9,S△ABC= ,
∴ ACBM= ,即 ×9BM= ,
解得BM=3.
由勾股定理,得
AM= = =4,
則tanA= = ;
(2)
存在.
如圖2,過點P作PN⊥AC于點N.
依題意得AP=CQ=5t.
∵tanA= ,
∴AN=4t,PN=3t.
∴QN=AC﹣AN﹣CQ=9﹣9t.
根據(jù)勾股定理得到:PN2+NQ2=PQ2,
S正方形PQEF=PQ2=(3t)2+(9﹣9t)2=90t2﹣162t+81(0<t< ).
∵﹣ = = 在t的取值范圍之內(nèi),
∴S最小值= = =
(3)
①如圖3,當點E在邊HG上時,t1= ;②如圖4,當點F在邊HG上時,t2= ;③如圖5,當點P邊QH(或點E在QC上)時,t3=1④如圖6,當點F邊CG上時,t4= .
【解析】(1)如圖1,過點B作BM⊥AC于點M,利用面積法求得BM的長度,利用勾股定理得到AM的長度,最后由銳角三角函數(shù)的定義進行解答;(2)如圖2,過點P作PN⊥AC于點N.利用(1)中的結(jié)論和勾股定理得到PN2+NQ2=PQ2 , 所以由正方形的面積公式得到S關(guān)于t的二次函數(shù),利用二次函數(shù)的頂點坐標公式和二次函數(shù)圖象的性質(zhì)來求其最值;(3)需要分類討論:當點E在邊HG上、點F在邊HG上、點P邊QH(或點E在QC上)、點F邊C上時相對應(yīng)的t的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離( 取1.73,結(jié)果精確到0.1千米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了弘揚優(yōu)秀傳統(tǒng)文化,某中學舉辦了文化知識大賽,其規(guī)則是:每位參賽選手回答100道選擇題,答對一題得1分,不答或錯答不扣分,賽后對全體參賽選手的答題情況進行了相關(guān)統(tǒng)計,整理并繪制成如下圖表:
組別 | 分數(shù)段 | 頻數(shù)(人) | 頻率 |
1 | 50≤x<60 | 30 | 0.1 |
2 | 60≤x<70 | 45 | 0.15 |
3 | 70≤x<80 | 60 | n |
4 | 80≤x<90 | m | 0.4 |
5 | 90≤x<100 | 45 | 0.15 |
請根據(jù)以圖表信息,解答下列問題:
(1)表中m= , n=;
(2)補全頻數(shù)分布直方圖;
(3)在得分前5名的同學中,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學參加區(qū)級的比賽,用樹狀圖或列表法求選出的兩名同學恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李老師為了了解所教班級學生完成數(shù)學課前預習的具體情況,對本班部分學生進行了為期半個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)李老師一共調(diào)查了多少名同學?
(2)C類女生有3名,D類男生有1名,將圖1條形統(tǒng)計圖補充完整;
(3)為了共同進步,李老師想從被調(diào)查的A類和D類學生中各隨機選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A為某封閉圖形邊界上一定點,動點P從點A出發(fā),沿其邊界順時針勻速運動一周.設(shè)點P運動的時間為x,線段AP的長為y.表示y與x的函數(shù)關(guān)系的圖象大致如圖,則該封閉圖形可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持AD=CE.連接DE、DF、EF.在此運動變化的過程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形;
③四邊形CDFE的面積保持不變;
④△CDE面積的最大值為8.
其中正確的結(jié)論有( )個.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:拋物線y=ax2+bx+c交y軸于點C(0,4),對稱軸x=2與x軸交于點D,頂點為M,且DM=OC+OD,
(1)求拋物線的解析式;
(2)設(shè)點P(x,y)是第一象限內(nèi)該拋物線上的一個動點,△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求當x取多少時,S的值最大,最大是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2015年5月31日,我國飛人蘇炳添在美國尤金舉行的國際田聯(lián)鉆石聯(lián)賽100米男子比賽中,獲得好成績,成為歷史上首位突破10秒大關(guān)的黃種人.如表是蘇炳添近五次大賽參賽情況:
比賽日期 | 2012﹣8﹣4 | 2013﹣5﹣21 | 2014﹣9﹣28 | 2015﹣5﹣20 | 2015﹣5﹣31 |
比賽地點 | 英國倫敦 | 中國北京 | 韓國仁川 | 中國北京 | 美國尤金 |
成績(秒) | 10.19 | 10.06 | 10.10 | 10.06 | 9.99 |
則蘇炳添這五次比賽成績的眾數(shù)和平均數(shù)分別為( 。
A.10.06秒,10.06秒
B.10.10秒,10.06秒
C.10.06秒,10.08秒
D.10.08秒,10.06秒
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賓館準備購進一批換氣扇,從電器商場了解到:一臺A型換氣扇和三臺B型換氣扇共需275元;三臺A型換氣扇和二臺B型換氣扇共需300元.
(1)求一臺A型換氣扇和一臺B型換氣扇的售價各是多少元;
(2)若該賓館準備同時購進這兩種型號的換氣扇共40臺并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com