【題目】已知,在△ABC 中,∠A=90°,AB=AC,點(diǎn) D 為 BC 的中點(diǎn).
(1)點(diǎn) E、F 分別為 AB、AC 上的中點(diǎn),請(qǐng)按要求作出滿(mǎn)足條件的△ABC 圖形并證明:DE=DF;
(2)如圖①,若點(diǎn) E、F 分別為 AB、AC 上的點(diǎn),且 DE⊥DF,求證:BE=AF;
(3)若點(diǎn) E、F 分別為 AB、CA 延長(zhǎng)線上的點(diǎn),且 DE⊥DF,那么 BE=AF 嗎?請(qǐng)利用圖②說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3) BE=AF,見(jiàn)解析.
【解析】
(1)畫(huà)圖并證明△AED≌△AFD,可得DE=DF;
(2)如圖①,證明△BDE≌△ADF,可得BE=AF;
(3)如圖②,證明△EDB≌△FDA,可得BE=AF.
(1)如圖,連接AD.
∵∠A=90°,AB=AC,點(diǎn)D為BC的中點(diǎn),∴∠EAD=∠FAD.
∵點(diǎn)E、F分別為AB、AC上的中點(diǎn),∴AEAB,AFAC.
在△AED和△AFD中,∵,∴△AED≌△AFD(SAS),∴DE=DF;
(2)連接AD,如圖①所示.
∵∠BAC=90°,AB=AC,∴△ABC為等腰直角三角形,∠B=45°.
∵點(diǎn)D為BC的中點(diǎn),∴ADBC=BD,∠FAD=45°.
∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.
在△BDE和△ADF中,∵,∴△BDE≌△ADF(ASA),∴BE=AF;
(3)BE=AF.證明如下:
連接AD,如圖②所示.
∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.
∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.
在△EDB和△FDA中,∵,∴△EDB≌△FDA(ASA),∴BE=AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知直線l1∥l2,且l3和l1,l2分別相交于A,B兩點(diǎn),l4和l1,l2分別交于C,D兩點(diǎn),∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,
點(diǎn)P在線段AB上.
(1)若∠1=22°,∠2=33°,則∠3=________;
(2)試找出∠1,∠2,∠3之間的等量關(guān)系,并說(shuō)明理由;
(3)應(yīng)用(2)中的結(jié)論解答下列問(wèn)題;
如圖②,點(diǎn)A在B處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數(shù);
(4)如果點(diǎn)P在直線l3上且在A,B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),其他條件不變,試探究∠1,∠2,∠3之間的關(guān)系(點(diǎn)P和A,B兩點(diǎn)不重合),直接寫(xiě)出結(jié)論即可.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次中學(xué)生田徑運(yùn)動(dòng)會(huì)上,根據(jù)參加男子跳高初賽的運(yùn)動(dòng)員的成績(jī)(單位:m),繪制出如下兩幅統(tǒng)計(jì)圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中a= , 初賽成績(jī)?yōu)?.70m所在扇形圖形的圓心角為°;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)這組初賽成績(jī)的眾數(shù)是 m,中位數(shù)是 m;
(4)根據(jù)這組初賽成績(jī)確定8人進(jìn)入復(fù)賽,那么初賽成績(jī)?yōu)?.60m的運(yùn)動(dòng)員楊強(qiáng)能否進(jìn)入復(fù)賽?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在線段AB的延長(zhǎng)線上,AC=BC,D在AB的反向延長(zhǎng)線上,BD=DC.
(1)在圖上畫(huà)出點(diǎn)C和點(diǎn)D的位置;
(2)設(shè)線段AB長(zhǎng)為x,則BC=__ __,AD=__ __;(用含x的代數(shù)式表示)
(3)設(shè)AB=12 cm,求線段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解決問(wèn)題時(shí)需要思考:是否解決過(guò)與其類(lèi)似的問(wèn)題.小明從問(wèn)題1解題思路中獲得啟發(fā)從而解決了問(wèn)題2.
(1)問(wèn)題1:如圖①,在正方形ABCD中,E、F是BC、CD上兩點(diǎn),∠EAF=45°.
求證:∠AEF=∠AEB.
小明給出的思路為:延長(zhǎng)EB到H,滿(mǎn)足BH=DF,連接AH.請(qǐng)完善小明的證明過(guò)程.
(2)問(wèn)題2:如圖②,在等腰直角△ABC中,∠ACB=90°,AC=BC=4,D為AB中點(diǎn),E、F是AC、BC邊上兩點(diǎn),∠EDF=45°.
①求點(diǎn)D到EF的距離.
②若AE=a,則S△DEF=(用含字母a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,2條直線 最多有=1個(gè)交點(diǎn),3條直線最多有=3個(gè)交點(diǎn),4條直線最多有=6個(gè)交點(diǎn),……由此猜想,8條直線最多有___個(gè)交點(diǎn).
A. 32 B. 16 C. 28 D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生課外閱讀的喜好,某校從八年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,調(diào)查要求每人只選取一種喜歡的書(shū)籍,如果沒(méi)有喜歡的書(shū)籍,則作“其它”類(lèi)統(tǒng)計(jì)。圖(1)與圖(2)是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖。以下結(jié)論不正確的是( )
A. 由這兩個(gè)統(tǒng)計(jì)圖可知喜歡“科普常識(shí)”的學(xué)生有90人.
B. 若該年級(jí)共有1200名學(xué)生,則由這兩個(gè)統(tǒng)計(jì)圖可估計(jì)喜愛(ài)“科普常識(shí)”的學(xué)生約有360個(gè).
C. 由這兩個(gè)統(tǒng)計(jì)圖不能確定喜歡“小說(shuō)”的人數(shù).
D. 在扇形統(tǒng)計(jì)圖中,“漫畫(huà)”所在扇形的圓心角為72°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在邊AB上,點(diǎn)E在邊AC上,CE=BD,連接CD,BE,BE與CD相交于點(diǎn)F.
(1)如圖1,若△ACD為等邊三角形,且CE=DF,求∠CEF的度數(shù);
(2)如圖2,若AC=AD,求證:EF=FB;
(3)如圖3,在(2)的條件下,若∠CFE=45°,△BCD的面積為4,求線段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點(diǎn)H,AC的延長(zhǎng)線與過(guò)點(diǎn)B的直線相交于點(diǎn)E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點(diǎn)F、G,若BGBA=48,F(xiàn)G= ,DF=2BF,求AH的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com