(2012•衡陽)如圖,一段河壩的橫截面為梯形ABCD,試根據(jù)圖中數(shù)據(jù),求出壩底寬AD.(i=CE:ED,單位:m)
分析:作BF⊥AD于點(diǎn)于F,在直角△ABF中利用勾股定理即可求得AF的長(zhǎng),在直角△CED中,利用坡比的定義即可求得ED的長(zhǎng)度,進(jìn)而即可求得AD的長(zhǎng).
解答:解:作BF⊥AD于點(diǎn)F.則BF=CE=4m,EF=BC=4.5m.
在Rt△ABF中,AF=
AB2-BF2
=
52-42
=3m,
在Rt△CED中,根據(jù)i=
CE
ED
,
則ED=
CE
i
=
4
1
3
=4
3
m.
則AD=AF+EF+ED=3+4.5+4
3
=(7.5+4
3
)m.
答:壩底寬AD為(7.5+4
3
)m.
點(diǎn)評(píng):本題考查了坡度坡角的問題,把梯形的計(jì)算通過作高線轉(zhuǎn)化成直角三角形的計(jì)算是解決本題的基本思路.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡陽)如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:
①a>0   ②2a+b=0  ③a+b+c>0  ④當(dāng)-1<x<3時(shí),y>0
其中正確的個(gè)數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡陽)如圖,A、B兩點(diǎn)的坐標(biāo)分別是(8,0)、(0,6),點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A作勻速直線運(yùn)動(dòng),速度為每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q由A出發(fā)沿AO(O為坐標(biāo)原點(diǎn))方向向點(diǎn)O作勻速直線運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度,連接PQ,若設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<
103
)秒.解答如下問題:
(1)當(dāng)t為何值時(shí),PQ∥BO?
(2)設(shè)△AQP的面積為S,
①求S與t之間的函數(shù)關(guān)系式,并求出S的最大值;
②若我們規(guī)定:點(diǎn)P、Q的坐標(biāo)分別為(x1,y1),(x2,y2),則新坐標(biāo)(x2-x1,y2-y1)稱為“向量PQ”的坐標(biāo).當(dāng)S取最大值時(shí),求“向量PQ”的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡陽)如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡陽)如圖,直線a⊥直線c,直線b⊥直線c,若∠1=70°,則∠2=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案