精英家教網 > 初中數學 > 題目詳情
(2007•資陽)如圖,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(點A在x軸的正半軸上),與y軸交于點C,矩形DEFG的一條邊DE在線段AB上,頂點F、G分別在線段BC、AC上,拋物線P上部分點的橫坐標對應的縱坐標如下:
x-3-212
y-4
(1)求A、B、C三點的坐標;
(2)若點D的坐標為(m,0),矩形DEFG的面積為S,求S與m的函數關系,并指出m的取值范圍;
(3)當矩形DEFG的面積S取最大值時,連接DF并延長至點M,使FM=k•DF,若點M不在拋物線P上,求k的取值范圍.

【答案】分析:(1)根據圖表可以得到,拋物線經過的四點的坐標,根據待定系數法,設y=ax2+bx+c把其中三點的坐標,就可以解得函數的解析式.進而就可以求出A、B、C的坐標.
(2)易證△ADG∽△AOC,AD=2-m,根據相似三角形的對應邊的比相等,就可以用m表示出DG的長,再根據△BEF∽△BOC,就可以表示出BE,就可以得到OE,因而ED就可以表示出來.因而S與m的函數關系就可以得到.
(3)當矩形DEFG的面積S取最大值時,就是函數的值是最大值時,根據二次函數的性質就可以求出相應的m的值.則矩形的四個頂點的坐標就可以求出,根據待定系數法就可以求出直線DF的解析式.就可以求出直線DF與拋物線的交點的坐標,根據FM=k•DF,就可以表示出M的坐標,把M的坐標代入函數就可以得到一個關于k的方程,求出k的值,判斷是否滿足函數的解析式.
解答:解:(1)解法一:設y=ax2+bx+c(a≠0),
任取x,y的三組值代入,求出解析式y(tǒng)=x2+x-4,
令y=0,求出x1=-4,x2=2;
令x=0,得y=-4,
∴A、B、C三點的坐標分別是A(2,0),B(-4,0),C(0,-4).
解法二:由拋物線P過點(1,-),(-3,-)可知,
拋物線P的對稱軸方程為x=-1,
又∵拋物線P過(2,0)、(-2,-4),
∴由拋物線的對稱性可知,
點A、B、C的坐標分別為A(2,0),B(-4,0),C(0,-4).

(2)由題意,=,而AO=2,OC=4,AD=2-m,故DG=4-2m,
=,EF=DG,得BE=4-2m,
∴DE=3m,
∴SDEFG=DG•DE=(4-2m)3m=12m-6m2(0<m<2).

(3)∵SDEFG=12m-6m2(0<m<2),
∴m=1時,矩形的面積最大,且最大面積是6.
當矩形面積最大時,其頂點為D(1,0),G(1,-2),F(-2,-2),E(-2,0),
設直線DF的解析式為y=kx+b,易知,k=,b=-,
∴y=x-,
又可求得拋物線P的解析式為:y=x2+x-4,
x-=x2+x-4,可求出x=
設射線DF與拋物線P相交于點N,則N的橫坐標為,過N作x軸的垂線交x軸于H,
===
點M不在拋物線P上,即點M不與N重合時,此時k的取值范圍是
k≠且k>0.
點評:本題主要考查了待定系數法求函數的解析式,并且本題還考查了函數交點坐標的求法.就是求函數的解析式組成的方程組.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2007•資陽)如圖,已知點A(-4,2)、B( n,-4)是一次函數y=kx+b的圖象與反比例函數y=
mx
圖象的兩個交點:
(1)求點B的坐標和一次函數的解析式;
(2)求△AOB的面積;
(3)根據圖象寫出使一次函數的值小于反比例函數值的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省珠海市中考數學二模試卷(解析版) 題型:解答題

(2007•資陽)如圖,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(點A在x軸的正半軸上),與y軸交于點C,矩形DEFG的一條邊DE在線段AB上,頂點F、G分別在線段BC、AC上,拋物線P上部分點的橫坐標對應的縱坐標如下:
x-3-212
y-4
(1)求A、B、C三點的坐標;
(2)若點D的坐標為(m,0),矩形DEFG的面積為S,求S與m的函數關系,并指出m的取值范圍;
(3)當矩形DEFG的面積S取最大值時,連接DF并延長至點M,使FM=k•DF,若點M不在拋物線P上,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2009年湖北省襄樊市?悼h城關鎮(zhèn)中中考數學二模試卷(解析版) 題型:解答題

(2007•資陽)如圖,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(點A在x軸的正半軸上),與y軸交于點C,矩形DEFG的一條邊DE在線段AB上,頂點F、G分別在線段BC、AC上,拋物線P上部分點的橫坐標對應的縱坐標如下:
x-3-212
y-4
(1)求A、B、C三點的坐標;
(2)若點D的坐標為(m,0),矩形DEFG的面積為S,求S與m的函數關系,并指出m的取值范圍;
(3)當矩形DEFG的面積S取最大值時,連接DF并延長至點M,使FM=k•DF,若點M不在拋物線P上,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2009年河北省石家莊市第42中學中考數學二模試卷(解析版) 題型:解答題

(2007•資陽)如圖,已知點A(-4,2)、B( n,-4)是一次函數y=kx+b的圖象與反比例函數圖象的兩個交點:
(1)求點B的坐標和一次函數的解析式;
(2)求△AOB的面積;
(3)根據圖象寫出使一次函數的值小于反比例函數值的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2007年四川省資陽市中考數學試卷(解析版) 題型:解答題

(2007•資陽)如圖,已知點A(-4,2)、B( n,-4)是一次函數y=kx+b的圖象與反比例函數圖象的兩個交點:
(1)求點B的坐標和一次函數的解析式;
(2)求△AOB的面積;
(3)根據圖象寫出使一次函數的值小于反比例函數值的x的取值范圍.

查看答案和解析>>

同步練習冊答案