【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場(chǎng).圖中的函數(shù)圖象刻畫了“龜兔再次賽跑”的故事(表示時(shí)間,、表示路程),根據(jù)圖象解答下列問題:
(1)“龜兔再次賽跑”的路程為__________米;
(2)它們兩個(gè)約定__________先出發(fā)(填“兔子”和“烏龜”),先出發(fā)__________分鐘;
(3)烏龜跑完全程用了__________分鐘,兔子跑完全程用了__________分鐘,烏龜平均速度是__________米/分,兔子平均速度是__________米/分;
(4)觀察圖象,你還能得出什么結(jié)論?
【答案】(1)1000;(2)烏龜,40;(3)60,10,,100;(4)答案不唯一,如烏龜比賽途中原地休息10分鐘.
【解析】
(1)根據(jù)圖象即可得出結(jié)論;
(2)根據(jù)圖象即可得出結(jié)論;
(3)根據(jù)圖象計(jì)算即可;
(4)根據(jù)圖象,寫出一個(gè)符合題意的結(jié)論即可.
解:(1)由圖象可知:“龜兔再次賽跑”的路程為1000米
故答案為:1000;
(2)由圖象可知:它們兩個(gè)約定烏龜先出發(fā),先出發(fā)40分鐘
故答案為:烏龜;40;
(3)由圖象可知:烏龜跑完全程用了60分鐘,兔子跑完全程用了50-40=10分鐘,烏龜平均速度是1000÷60=米/分,兔子平均速度是1000÷10=100米/分;
故答案為:60;10;;100;
(4)答案不唯一,如烏龜比賽途中原地休息10分鐘.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)△ABC(頂點(diǎn)在網(wǎng)格線的交點(diǎn)上)的頂點(diǎn)A、C的坐標(biāo)分別為A(﹣3,4)C(0,2)
(1)請(qǐng)?jiān)诰W(wǎng)格所在的平面內(nèi)建立平面直角坐標(biāo)系,并寫出點(diǎn)B的坐標(biāo);
(2)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的圖形△A1B1C1;
(3)求△ABC的面積;
(4)在x軸上存在一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,點(diǎn)P是CD的中點(diǎn),∠BCD=60°,射線AP交BC的延長線于點(diǎn)E,射線BP交DE于點(diǎn)K,點(diǎn)O是線段BK的中點(diǎn).
(1)求證:△ADP≌△ECP;
(2)若BP=nPK,試求出n的值;
(3)作BM丄AE于點(diǎn)M,作KN丄AE于點(diǎn)N,連結(jié)MO、NO,如圖2所示,請(qǐng)證明△MON是等腰三角形,并直接寫出∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xoy中,點(diǎn)M在x軸的正半軸上,⊙M交x軸于A、B兩點(diǎn),交y軸于C、D兩點(diǎn),且C為弧AE的中點(diǎn),AE交y軸于G點(diǎn),若點(diǎn)A的坐標(biāo)為(-1,0),AE=4
(1)求點(diǎn)C的坐標(biāo);
(2)連接MG、BC,求證:MG∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)圖1是一個(gè)長為2a,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按圖2的形狀拼成一個(gè)正方形.
圖2的陰影部分的正方形的邊長是______.
用兩種不同的方法求圖中陰影部分的面積.
(方法1)= ____________;
(方法2)= ____________;
(3) 觀察圖2,寫出(a+b)2,(a-b)2,ab這三個(gè)代數(shù)式之間的等量關(guān)系;
根據(jù)題中的等量關(guān)系,解決問題:若m+n=10,m-n=6,求mn的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程x2-(k+2)x+k-1=0
(1)若方程的一個(gè)根為 -1,求的值和方程的另一個(gè)根;
(2)求證:不論取何值,該方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機(jī)摸出一個(gè)小球(不放回),其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球,其數(shù)字記為q,則p,q使關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,靜靜將一幅三角板如圖擺放,點(diǎn),,三點(diǎn)共線,其中,,,且.
(1)若,.求的長.
(2)若,求的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com