如圖(1),拋物線y=x2-2x+k與x軸交于A、B兩點,與y軸交于點C(0,-3).[圖(2)、圖(3)為解答備用圖]
精英家教網(wǎng)
(1)k=
 
,點A的坐標為
 
,點B的坐標為
 
;
(2)設拋物線y=x2-2x+k的頂點為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標;若不存在,請說明理由.
分析:(1)將C點坐標代入拋物線的解析式中,即可求出k的值;令拋物線的解析式中y=0,即可求出A、B的坐標;
(2)將拋物線的解析式化為頂點式,即可求出M點的坐標;由于四邊形ACMB不規(guī)則,可連接OM,將四邊形ACMB的面積轉(zhuǎn)化為△ACO、△MOC以及△MOB的面積和;
(3)當D點位于第三象限時四邊形ABCD的最大面積顯然要小于當D位于第四象限時四邊形ABDC的最大面積,因此本題直接考慮點D為與第四象限時的情況即可;設出點D的橫坐標,根據(jù)拋物線的解析式即可得到其縱坐標;可參照(2)題的方法求解,連接OD,分別表示出△ACO、△DOC以及△DOB的面積,它們的面積和即為四邊形ABDC的面積,由此可得到關于四邊形ABDC的面積與D點橫坐標的函數(shù)關系式,根據(jù)函數(shù)的性質(zhì)即可求出四邊形ABDC的最大面積及對應的D點坐標.
解答:解:(1)由于點C在拋物線的圖象上,則有:k=-3;
∴y=x2-2x-3;
令y=0,則x2-2x-3=0,
解得x=-1,x=3,
∴A(-1,0),B(3,0);精英家教網(wǎng)
故填:k=-3,A(-1,0),B(3,0);

(2)拋物線的頂點為M(1,-4),連接OM;
則△AOC的面積=
1
2
AO•OC=
1
2
×1×3=
3
2
,
△MOC的面積=
1
2
OC•|xM|=
1
2
×3×1=
3
2

△MOB的面積=
1
2
OB•|yM|=
1
2
×3×4=6;
∴四邊形ABMC的面積=△AOC的面積+△MOC的面積+△MOB的面積=9;

(3)設D(m,m2-2m-3),連接OD;
則0<m<3,m2-2m-3<0;
且△AOC的面積=
3
2
,△DOC的面積=
3
2
m,△DOB的面積=-
3
2
(m2-2m-3);
∴四邊形ABDC的面積=△AOC的面積+△DOC的面積+△DOB的面積
=-
3
2
m2+
9
2
m+6=-
3
2
(m-
3
2
2+
75
8

∴存在點D(
3
2
,-
15
4
),使四邊形ABDC的面積最大,且最大值為
75
8
點評:此題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象與坐標軸交點坐標的求法、圖形面積的求法、二次函數(shù)的應用等重要知識點,綜合性強,能力要求較高.考查學生數(shù)形結(jié)合的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,拋物線y=x2的頂點為P,A、B是拋物線上兩點,AB∥x軸,四邊形ABCD為矩形,CD邊經(jīng)過點P,AB=2AD.
(1)求矩形ABCD的面積;
(2)如圖2,若將拋物線“y=x2”,改為拋物線“y=x2+bx+c”,其他條件不變,請猜想矩形ABCD的面積;
(3)若將拋物線“y=x2+bx+c”改為拋物線“y=ax2+bx+c”,其他條件不變,請猜想矩形ABCD的面積.(用a、b、c表示,并直接寫出答案)
附加題:若將題中“y=x2”改為“y=ax2+bx+c”,“AB=2AD”條件不要,其他條件不變,探索矩形ABCD面精英家教網(wǎng)積為常數(shù)時,矩形ABCD需要滿足什么條件并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知一拋物線過坐標原點O和點A(1,h)、B(4,0),C為拋物線對稱軸上一點精英家教網(wǎng),且OA⊥AB,∠COB=45°.
(1)求h的值;
(2)求此拋物線的解析式;
(3)若P為線段OB上一個動點(與端點不重合),過點P作PM⊥AB于M,PN⊥OC于N,試求
PM
OA
+
PN
BC
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、目前國內(nèi)最大跨徑的鋼管混凝土拱橋--永和大橋,是南寧市又一標志性建筑,其拱形圖形為拋物線的一部分(如圖1),在正常情況下,位于水面上的橋拱跨度為350米,拱高為85米.
(1)在所給的直角坐標系中(如圖2),假設拋物線的表達式為y=ax2+b,請你根據(jù)上述數(shù)據(jù)求出a,b的值,并寫出拋物線的表達式;(不要求寫自變量的取值范圍,a,b的值保留兩個有效數(shù)字)
(2)七月份汛期將要來臨,當邕江水位上漲后,位于水面上的橋拱跨度將會減小,當水位上漲4m時,位于水面上的橋拱跨度有多大?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、E在x軸上,CF交y軸于點B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點P為所求拋物線上的一動點,試判斷以點P為圓心,PB為半徑的圓與x軸的位置關系,并說明理由.
(3)如圖2,設點P在拋物線上且與點A不重合,直線PB與拋物線的另一個交點為Q,過點P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知知拋物線y=x2+bx+c與x軸交于點A(1,0)和點B,與y軸交于點C(0,-3).
(1)求拋物線的解析式;
(2)如圖(1),己知點H(0,-1).問在拋物線上是否存在點G (點G在y軸的左側(cè)),使得S△GHC=S△GHA?若存在,求出點G的坐標;若不存在,請說明理由;
(3)如圖(2),拋物線上點D在x軸上的正投影為點E(-2,0),F(xiàn)是OC的中點,連接DF,P為線段BD上的一點,若∠EPF=∠BDF,求線段PE的長.
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案