(2010•黃石)已知拋物線y=x2+bx+c與直線y=x+1有兩個(gè)交點(diǎn)A、B.
(1)當(dāng)AB的中點(diǎn)落在y軸時(shí),求c的取值范圍;
(2)當(dāng)AB=2,求c的最小值,并寫(xiě)出c取最小值時(shí)拋物線的解析式;
(3)設(shè)點(diǎn)P(t,T)在AB之間的一段拋物線上運(yùn)動(dòng),S(t)表示△PAB的面積.
①當(dāng)AB=2,且拋物線與直線的一個(gè)交點(diǎn)在y軸時(shí),求S(t)的最大值,以及此時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)AB=m(正常數(shù))時(shí),S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此時(shí)點(diǎn)P的坐標(biāo)(t,T)滿足的關(guān)系,若不存在說(shuō)明理由.

【答案】分析:(1)若AB的中點(diǎn)落在y軸上,那么A、B的橫坐標(biāo)互為相反數(shù),即兩個(gè)橫坐標(biāo)的和為0;可聯(lián)立兩個(gè)函數(shù)的解析式,那么A、B的橫坐標(biāo)即為所得方程的兩根,根據(jù)方程有兩個(gè)不等的實(shí)數(shù)根及兩根的和為0即可求出c的取值范圍;
(2)由于直線AB的斜率為1,當(dāng)AB=2時(shí),A、B兩點(diǎn)橫坐標(biāo)差的絕對(duì)值為2;聯(lián)立兩個(gè)函數(shù)的解析式,可得到關(guān)于x的方程,那么A、B的橫坐標(biāo)就是方程的兩個(gè)根,可用韋達(dá)定理表示出兩根差的絕對(duì)值,進(jìn)而求出b、c的關(guān)系式,即可得到c的最小值以及對(duì)應(yīng)的b的值,由此可確定拋物線的解析式;
(3)①在(2)中已經(jīng)求得了b、c的關(guān)系式,若拋物線與直線的一個(gè)交點(diǎn)在y軸,那么c=1,可據(jù)此求出b的值;進(jìn)而可確定拋物線的解析式,過(guò)P作PQ∥y軸,交AB于Q,可根據(jù)拋物線和直線AB的解析式表示出P、Q的縱坐標(biāo),進(jìn)而可求出PQ的表達(dá)式,以PQ為底,A、B橫坐標(biāo)的差的絕對(duì)值為高即可求出△PAB的面積,進(jìn)而可得出關(guān)于S(t)和t的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出△PAB的最大面積及對(duì)應(yīng)的P點(diǎn)坐標(biāo);
②結(jié)合(2)以及(3)①的方法求解即可.
解答:解:(1)由x2+bx+c=x+1,得x2+(b-1)x+c-1=0①.
設(shè)交點(diǎn)A(x1,y1),B(x2,y2) (x1<x2).
∵AB的中點(diǎn)落在y軸,
∴A,B兩點(diǎn)到y(tǒng)軸的距離相等,即A,B兩點(diǎn)的橫坐標(biāo)互為相反數(shù),
∴x1+x2=0,

∴c<1;(3分)

(2)∵,如圖,過(guò)A作x軸的平行線,過(guò)B作y軸的平行線,它們交于G點(diǎn),
∵直線y=x+1與x軸的夾角為45°,
∴△ABG為等腰直角三角形,

AG==2,
即|x1-x2|=2,
∴(x1+x22-4x1x2=4,
由(1)可知x1+x2=-(b-1),x1x2=c-1.
代入上式得:(b-1)2-4(c-1)=4,


(3)①∵
又∵拋物線與直線的交點(diǎn)在y軸時(shí),交點(diǎn)的橫坐標(biāo)為0,
把x=0代入①,得c-1=0,∴c=1.
∴這一交點(diǎn)為(0,1);
;
當(dāng)b=-1時(shí),y=x2-x+1,過(guò)P作PQ∥y軸交直線AB于Q,則有:
P(t,t2-t+1),Q(t,t+1);
∴PQ=t+1-(t2-t+1)=-t2+2t;
∴S(t)=PQ×AB=-t2+2t=-(t-1)2+1;
當(dāng)t=1時(shí),S(t)有最大值,且S(t)最大=1,此時(shí)P(1,1);
當(dāng)b=3時(shí),y=x2+3x+1,同上可求得:
S(t)=PQ×AB=-t2-2t=-(t+1)2+1;
當(dāng)t=-1時(shí),S(t)有最大值,且S(t)最大=1,此時(shí)P(-1,-1);
故當(dāng)P點(diǎn)坐標(biāo)為(1,1)或(-1,-1)時(shí),S(t)最大,且最大值為1;
②同(2)可得:(b-1)2-4(c-1)=m2,
由題意知:c=1,則有:
(b-1)2=m2,即b=1±m;
當(dāng)b=1+m時(shí),y=x2+(1+m)x+1,
∴P(t,t2+(1+m)t+1),Q(t,t+1);
∴PQ=t+1-[t2+(1+m)t+1]=-t2-mt;
∴S(t)=PQ×AB=(-t2-mt)×m=-m(t+2+m3;
∴當(dāng)t=-時(shí),S(t)最大=m3,
此時(shí)P(-m,--+1);
當(dāng)b=1-m時(shí),y=x2+(1-m)x+1,同上可求得:
S(t)=-m(t-2+m3;
∴當(dāng)t=m時(shí),S(t)最大=m3
此時(shí)P(m,+m+1);
故當(dāng)P(-m,--+1)或(m,+m+1)時(shí),S(t)有最大值,且最大值為m3
點(diǎn)評(píng):此題主要考查了二次函數(shù)與一元二次方程的關(guān)系,根與系數(shù)的關(guān)系,根的判別式,函數(shù)圖象交點(diǎn)及圖形面積的求法等知識(shí),綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省黃石市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•黃石)已知拋物線y=x2+bx+c與直線y=x+1有兩個(gè)交點(diǎn)A、B.
(1)當(dāng)AB的中點(diǎn)落在y軸時(shí),求c的取值范圍;
(2)當(dāng)AB=2,求c的最小值,并寫(xiě)出c取最小值時(shí)拋物線的解析式;
(3)設(shè)點(diǎn)P(t,T)在AB之間的一段拋物線上運(yùn)動(dòng),S(t)表示△PAB的面積.
①當(dāng)AB=2,且拋物線與直線的一個(gè)交點(diǎn)在y軸時(shí),求S(t)的最大值,以及此時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)AB=m(正常數(shù))時(shí),S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此時(shí)點(diǎn)P的坐標(biāo)(t,T)滿足的關(guān)系,若不存在說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次根式》(01)(解析版) 題型:選擇題

(2010•黃石)已知x<1,則化簡(jiǎn)的結(jié)果是( )
A.x-1
B.x+1
C.-x-1
D.1-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省黃石市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•黃石)如圖,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分線交AC于D,則∠CBD的度數(shù)為    °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省黃石市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•黃石)已知x<1,則化簡(jiǎn)的結(jié)果是( )
A.x-1
B.x+1
C.-x-1
D.1-

查看答案和解析>>

同步練習(xí)冊(cè)答案