如圖1,已知菱形ABCD的邊長(zhǎng)為2,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在坐標(biāo)原點(diǎn).點(diǎn)D的坐標(biāo)為(,3),拋物線y=ax2+b(a≠0)經(jīng)過(guò)AB、CD兩邊的中點(diǎn).
(1)求這條拋物線的函數(shù)解析式;
(2)將菱形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向勻速平移(如圖2),過(guò)點(diǎn)B作BE⊥CD于點(diǎn)E,交拋物線于點(diǎn)F,連接DF、AF.設(shè)菱形ABCD平移的時(shí)間為t秒(0<t<)
①當(dāng)t=1時(shí),△ADF與△DEF是否相似?請(qǐng)說(shuō)明理由;
②連接FC,以點(diǎn)F為旋轉(zhuǎn)中心,將△FEC按順時(shí)針?lè)较蛐D(zhuǎn)180°,得△FE′C′,當(dāng)△FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時(shí),求t的取值范圍.(寫出答案即可)
(1)y=﹣x2+3
(2)①由對(duì)應(yīng)邊成比例可證得
②畫出旋轉(zhuǎn)后的圖形,認(rèn)真分析滿足題意要求時(shí),需要具備什么樣的限制條件,然后根據(jù)限制條件列出不等式,求出t的取值范圍.確定限制條件是解題的關(guān)鍵
解析試題分析:解:(1)由題意得AB的中點(diǎn)坐標(biāo)為(﹣,0),
CD的中點(diǎn)坐標(biāo)為(0,3), 2分
分別代入y=ax2+b得
,解得,,
∴y=﹣x2+3. 3分
(2)①如圖2所示,在Rt△BCE中,∠BEC=90°,BE=3,BC=2
∴sinC===,∴∠C=60°,∠CBE=30°
∴EC=BC=,DE= 4分
又∵AD∥BC,∴∠ADC+∠C=180°
∴∠ADC=180°﹣60°=120° 5分
∵t=1,
∴B點(diǎn)為(1,0)
∴F(1,2) ,E(1,3)
∴EF=1 6分
在Rt△DEF中
tan∠EDF=
∴∠EDF=300
∴∠ADF=∠ADC—∠EDF=1200—300=900
∴∠ADF=∠DEF
∴DF=2EF=2 7分
又∵,
∴
∴△ADF∽△DEF 8分
②如圖3所示,依題意作出旋轉(zhuǎn)后的三角形△FE′C′,過(guò)C′作MN⊥x軸,分別交拋物線、x軸于點(diǎn)M、點(diǎn)N.
觀察圖形可知,欲使△FE′C′落在指定區(qū)域內(nèi),必須滿足:EE′≤BE且MN≥C′N.
∵F(t,3﹣t2),∴EF=3﹣(3﹣t2)=t2,∴EE′=2EF=2t2,
由EE′≤BE,得2t2≤3,解得t≤.
∵C′E′=CE=,∴C′點(diǎn)的橫坐標(biāo)為t﹣,
∴MN=3﹣(t﹣)2,又C′N=BE′=BE﹣EE′=3﹣2t2,
由MN≥C′N,得3﹣(t﹣)2≥3﹣2t2,解得t≥.
∴t的取值范圍為:. 11分
考點(diǎn):二次函數(shù)、圖形的變換、菱形的性質(zhì)、三角形相似
點(diǎn)評(píng):本題是中考?jí)狠S題,綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、幾何變換(平移與旋轉(zhuǎn))、菱形的性質(zhì)、相似三角形的判定與性質(zhì)等重要知識(shí)點(diǎn),難度較大,對(duì)考生能力要求很高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
a |
s |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1,已知菱形ABCD的邊長(zhǎng)為,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在坐標(biāo)原點(diǎn).點(diǎn)D的坐標(biāo)為(- ,3),拋物線y=ax2+b(a≠0)經(jīng)過(guò)AB、CD兩邊的中點(diǎn).
(1)求這條拋物線的函數(shù)解析式;
(2)將菱形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向勻速平移(如圖2),過(guò)點(diǎn)B作BE⊥CD于點(diǎn)E,交拋物線于點(diǎn)F,連接DF、AF.設(shè)菱形ABCD平移的時(shí)間為t秒(0<t< 3 )
①是否存在這樣的t,使△ADF與△DEF相似?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
②連接FC,以點(diǎn)F為旋轉(zhuǎn)中心,將△FEC按順時(shí)針?lè)较蛐D(zhuǎn)180°,得△FE′C′,當(dāng)△FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時(shí),求t的取值范圍.(寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(浙江臺(tái)州卷)數(shù)學(xué)(帶解析) 題型:解答題
如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“好玩三角形”
(1)請(qǐng)用直尺與圓規(guī)畫一個(gè)“好玩三角形”;
(2)如圖1,在Rt△ABC中,∠C=90°,,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長(zhǎng)為a, ∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同的速度分別沿折線AB-BC和AD-DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P所經(jīng)過(guò)的路程為s
①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求的值;
②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過(guò)程中,有且只有一個(gè)△APQ能成為“好玩三角形”?請(qǐng)直接寫出tanβ的取值范圍。
(4)本小題為選做題
依據(jù)(3)中的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,tanβ的取值范圍與△APQ是“好玩三角形”的個(gè)數(shù)關(guān)系”的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年四川省眉山市中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com