如圖所示,扇形OAB的半徑OA=r,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,點M在DE上,DM=2EM,過點C的直線PC交OA的延長線于點P,且∠CPD=∠CDE.
(1)求證:DM=
2
3
r;
(2)求證:直線PC是扇形OAB所在圓的切線;
(3)設(shè)y=CD2+3CM2,當∠CPO=60°時,請求出y關(guān)于r的函數(shù)關(guān)系式.
(1)證明:連接OC,
∵點C是
AB
上異于A、B的點,又CD⊥OA于點D,CE⊥OB于點E,
∴∠ODC=∠OEC=∠AOB=90°,
∴四邊形ODCE是矩形,
∴DE=OC.
∵OC=OA=r,
∴DE=r.
又∵DM=2EM,
∴DM=
2
3
DE=
2
3
r;

(2)證明:設(shè)OC與DE交于點F,則在矩形ODCE中,F(xiàn)C=FD,
∴∠CDE=∠DCO,
又∵∠CPD+∠PCD=90°,∠CPD=∠CDE,
∴∠DCO+∠PCD=90°,即PC⊥OC于點C,
又∵OC為扇形OAB的半徑,
∴PC是扇形OAB所在圓的切線;

(3)過C作CH⊥DE于點H
∵∠OCD=∠CDH=∠CPO=60°,
∴在Rt△OCD和Rt△CDH中,得
CD=
1
2
OC=
1
2
r,DH=
1
2
CD=
1
4
r,CH=
3
4
r.
又MH=DM-DH=
2
3
r-
1
4
r=
5
12
r,
∴在Rt△CMH中,得CM2=MH2+CH2=(
5
12
r)
2
+(
3
4
r)
2
=
13
36
r2
,
則y=CD2+3CM2,
=(
1
2
r)
2
+3×
13
36
r2
=
4
3
r2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,A、B是⊙O上的兩點,AC是⊙O的切線,∠OBA=75°,⊙O的半徑為1,則OC的長等于(  )
A.
3
2
B.
2
2
C.
2
3
3
D.
2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:在△ABC中,∠ABC=30°,BC=4
3
,AB=4,以AB長為直徑作⊙O交BC于點D.
(1)試判斷△ABC的形狀,并說明理由;
(2)過點D作DE⊥AC,垂足為點E,求證:直線DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,PA、PB是⊙O的兩條切線,切點是A、B.如果OP=4,PA=2
3
,那么∠AOB等于(  )
A.90°B.100°C.110°D.120°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,∠BAC的平分線AD交△ABC的外接圓⊙O于點E,交BC于點D,過點E作⊙O的切線交AB的延長線于點F,若AD=3
3
,DE=
3

求證:
(1)EFBC;
(2)AF=2EF.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC切⊙O于點A,AD是⊙O的弦,OC⊥AD于F交⊙O于點E,連接DE、BE、BD、AE.
(1)求證:∠ACO=∠BED;
(2)連接CD,證明:直線CD是⊙O的切線;
(3)如果DEAB,AB=2cm,求四邊形AEDB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是半圓的直徑,O是圓心,C是AB延長線上一點,CD切半圓于D,DE⊥AB于E.已知AE:EB=4:1,CD=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,在△ABC中,∠C=90°,AB=10,AC=6,⊙O1與⊙O2是△ABC內(nèi)互相外切的等圓,且分別與∠A,∠B的兩邊相切,則這個等圓的半徑的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙O1、⊙O2的半徑分別是r1=3、r2=5.若兩圓相切,則圓心距O1O2的值是(  )
A.2或4B.6或8C.2或8D.4或6

查看答案和解析>>

同步練習冊答案