【題目】如圖,已知G、H分別是□ABCD對邊AD、BC上的點,直線GH分別交BA和DC的延長線于點E、F.
(1)當時,求 的值;
(2)聯(lián)結(jié)BD交EF于點M,求證:MG·ME=MF·MH.
科目:初中數(shù)學 來源: 題型:
【題目】某車間的甲、乙兩名工人分別同時生產(chǎn)同種零件,在開始生產(chǎn)的前2個小時為生產(chǎn)磨合期,2個小時后有一人停工一段時間對設備進行改良升級,以提升生產(chǎn)效率,另一人進入正常的生產(chǎn)模式,他們每人生產(chǎn)的零件總數(shù)(個)與生產(chǎn)時間(小時)的關(guān)系如圖所示,根據(jù)圖象回答:
(1)在生產(chǎn)過程中,哪位工人對設備進行改良升級,停止生產(chǎn)多少小時?
(2)當為多少時,甲、乙所生產(chǎn)的零件個數(shù)第一次相等?甲、乙中,誰先完成一天的生產(chǎn)任務?
(3)設備改良升級后每小時生產(chǎn)零件的個數(shù)是多少?與另一工人的正常生產(chǎn)速度相比每小時多生產(chǎn)幾個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某旅行團上午6時從旅館出發(fā),乘汽車到距離210km的著名旅游景點游玩,已知該汽車離旅館的距離S(km)與時間t(h)的關(guān)系如圖所示,根據(jù)圖像提供的信息,解答以下問題:
(1)求該旅行團在景點游玩了多少小時?
(2)求該旅行團去景點的平均速度?
(3)求返回賓館時該汽車離旅館的距離S(km)與時間t(h)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,順次連接四邊形ABCD各邊中點得四邊形EFGH,要使四邊形EFGH為菱形,則應添加的條件是( 。
A.AB∥DCB.AD=BCC.AC⊥BDD.AC=BD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①若|a|=-b,|b|=b,則a=b=0;②若-a不是正數(shù),則a為非負數(shù);③|-a|=(-a); ④若,則; ⑤若a+b=0,則a3+b3=0; ⑥若|a|>b,則a2>b2;其中正確的結(jié)論有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(a2-4a+2)(a2-4a+6)+4進行因式分解的過程:
解:設a2-4a=y(tǒng),則
原式=(y+2)(y+6)+4(第一步)
=y(tǒng)2+8y+16(第二步)
=(y+4)2(第三步)
=(a2-4a+4)2.(第四步)
(1)該同學因式分解的結(jié)果是否徹底:________(填“徹底”或“不徹底”);
(2)若不徹底,請你直接寫出因式分解的最后結(jié)果:________;
(3)請你模仿以上方法對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到B地.已知公路運價為1.5元/(噸·千米),鐵路運價為1.2元/(噸·千米),且這兩次運輸共支出公路運輸費15000元,鐵路運輸費97200元.
求:(1)該工廠從A地購買了多少噸原料?制成運往B地的產(chǎn)品多少噸?
(2)這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某?萍紝嵺`社團制作實踐設備,小明的操作過程如下:
①小明取出老師提供的圓形細鐵環(huán),先通過在圓一章中學到的知識找到圓心O,再任意找出圓O的一條直徑標記為AB(如圖1),測量出AB=4分米;
②將圓環(huán)進行翻折使點B落在圓心O的位置,翻折部分的圓環(huán)和未翻折的圓環(huán)產(chǎn)生交點分別標記為C、D(如圖2);
③用一細橡膠棒連接C、D兩點(如圖3);
④計算出橡膠棒CD的長度.
小明計算橡膠棒CD的長度為( )
A. 2分米 B. 2分米 C. 3分米 D. 3分米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com