如圖,四邊形ABCD是矩形,AB=3,AD=4,直線PS分別交AB、CD的延長線于P、S,交BC、AC、AD于Q、E、R,BP=1,DS=2.

(1)寫出圖中相似三角形(不含全等三角形);

(2)請(qǐng)找出圖中除AB=CD、BC=AD以外的相等線段,并證明你的判斷.

(3)求四邊形ABQR與四邊形CQRD的面積比.

 

【答案】

(1)△SRD∽△SQC、△SRD∽△PRA、△SRD∽△PQB、△PBQ∽△SCQ、△PBQ∽△PAR、△ARE∽△CQE、△PEA∽△SEC;(2)AP=AD、AC=SC;(3)5:7.

【解析】

試題分析:(1)根據(jù)相似三角形的判定方法結(jié)合圖形的特征求解即可;

(2)由AB=3,AD=4,BP=1,DS=2結(jié)合勾股定理求解即可;

(3)設(shè)BQ=,則QC=4-,由△PBQ∽△SCQ根據(jù)相似三角形的性質(zhì)可求得x,即可求得BQ、QC的長,由△SRD∽△SQC根據(jù)相似三角形的性質(zhì)可求得RD、AR的長,再根據(jù)三角形的面積公式求解即可.

(1)△SRD∽△SQC、△SRD∽△PRA、△SRD∽△PQB、△PBQ∽△SCQ、△PBQ∽△PAR、△ARE∽△CQE、△PEA∽△SEC;

(2)∵四邊形ABCD是矩形,AB=3,AD=4,BP=1,DS=2

∴AP=AD=4,AC=SC=5;

(3)設(shè)BQ=,則QC=4-

∵△PBQ∽△SCQ

,即,解得

即BQ=,QC=

∵△SRD∽△SQC

,RD. QC·,AR=4

∴SABQR(BQ+AR)·AB·()·3=5

∴SRDCQ=SABCD-SABQR=3×4-5=7 

∴SABQR:SCQRD=5:7.

考點(diǎn):相似三角形的綜合題

點(diǎn)評(píng):相似三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識(shí)點(diǎn),一般難度不大,需熟練掌握.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案