【題目】如圖,已知⊙O的直徑AB=12cm,AC是⊙O的弦,過點C作⊙O的切線交BA的延長線于點P,連接BC.
(1)求證:∠PCA=∠B
(2)已知∠P=40°,點Q在優(yōu)弧ABC上,從點A開始逆時針運動到點C停止(點Q與點C不重合),當△ABQ與△ABC的面積相等時,求動點Q所經(jīng)過的弧長。
【答案】
(1)
證明:連接OC,
∵PC是⊙O的切線,
∴∠PCO=90°,
∴∠1+∠PCA=90°,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠2+∠B=90°,
∵OC=OA,
∴∠1=∠2,
∴∠PCA=∠B;
(2)
解:∵∠P=40°,
∴∠AOC=50°,
∵AB=12,
∴AO=6,
當∠AOQ=∠AOC=50°時,△ABQ與△ABC的面積相等,
∴點Q所經(jīng)過的弧長==,
當∠BOQ=∠AOC=50°時,即∠AOQ=130°時,△ABQ與△ABC的面積相等,
∴點Q所經(jīng)過的弧長==,
當∠BOQ=50°時,即∠AOQ=230°時,△ABQ與△ABC的面積相等,
∴點Q所經(jīng)過的弧長==,
∴當△ABQ與△ABC的面積相等時,動點Q所經(jīng)過的弧長為或或.
【解析】(1)證明:連接OC,由PC是⊙O的切線,得到∠1+∠PCA=90°,由AB是⊙O的直徑,得到∠2+∠B=90°,于是得到結(jié)論;
(2)當∠AOQ=∠AOC=50°時,△ABQ與△ABC的面積相等,求得點Q所經(jīng)過的弧長==,當∠BOQ=∠AOC=50°時,即∠AOQ=130°時,△ABQ與△ABC的面積相等,求得點Q所經(jīng)過的弧長==,當∠BOQ=50°時,即∠AOQ=230°時,△ABQ與△ABC的面積相等,
∴點Q所經(jīng)過的弧長==
此題考查了圓的應用,包括切線的性質(zhì)和弧長的計算。注意分情況討論,熟練掌握弧長公式。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,點P在AB上,AP=2,點E、F同時從點P出發(fā),分別沿PA、PB以每秒1個單位長度的速度向點A、B勻速運動,點E到達點A后立刻以原速度沿AB向點B運動,點F運動到點B時停止,點E也隨之停止.在點E、F運動過程中,以EF為邊作正方形EFGH,使它與△ABC在線段AB的同側(cè).設E、F運動的時間為t/秒(t>0),正方形EFGH與△ABC重疊部分面積為S.
(1)當t=1時,正方形EFGH的邊長是 . 當t=3時,正方形EFGH的邊長是 .
(2)當0<t≤2時,求S與t的函數(shù)關(guān)系式;
(3)直接答出:在整個運動過程中,當t為何值時,S最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,請完成下列表格:
事件A | 必然事件 | 隨機事件 |
m的值 |
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①是我們常見的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.
(1)如圖②,AE是⊙O的直徑,用直尺和圓規(guī)作⊙O的內(nèi)接正八邊形ABCDEFGH(不寫作法,保留作圖痕跡);
(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個圓錐的側(cè)面,則這個圓錐底面圓的半徑等于
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三邊長為a、b、c,且a<b<c,若平行于三角形一邊的直線l將△ABC的周長分成相等的兩部分.設圖中的小三角形①、②、③的面積分別為S1 , S2 , S3 , 則S1 , S2 , S3的大小關(guān)系是 (用“<”號連接)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點O,△AOB的面積記為S2;…,依此類推,則Sn可表示為 .(用含n的代數(shù)式表示,其中n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4 , ∠BAD=60°,且AB>4 .
(1)求∠EPF的大小。
(2)若AP=6,求AE+AF的值。
(3)若△EFP的三個頂點E、F、P分別在線段AB、AD、AC上運動,請直接寫出AP長的最大值和最小值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標軸上,且點A(0,2),點C(﹣1,0),如圖所示:拋物線y=ax2+ax﹣2經(jīng)過點B.
(1)求點B的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com