如x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,那么,這就是著名的韋達(dá)定理.現(xiàn)在我們利用韋達(dá)定理解決問題:已知m與n是方程2x2-6x+3=0的兩根.
(1)填空:m+n=______,m•n=______;
(2)計(jì)算的值.
【答案】分析:(1)直接根據(jù)根與系數(shù)的關(guān)系求解;
(2)先把通分得到,然后把(1)中的結(jié)果代入計(jì)算即可.
解答:解:(1)根據(jù)題意得m+n=-=3,mn=;

(2)原式=
=
=4.
故答案為3,
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩個(gè)為x1,x2,則x1+x2=-,x1•x2=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x精英家教網(wǎng)軸的兩個(gè)交點(diǎn)B,C的橫坐標(biāo),且此拋物線過點(diǎn)A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱軸與線段AC相交于點(diǎn)Q,求點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在x軸上有一動(dòng)點(diǎn)M,當(dāng)MQ+MA取得最小值時(shí),求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

24、閱讀材料,解答問題.
例.用圖象法解一元二次不等式:x2-2x-3>0.
解:設(shè)y=x2-2x-3,則y是x的二次函數(shù).∵a=1>0,∴拋物線開口向上.
又∵當(dāng)y=0時(shí),x2-2x-3=0,解得x1=-1,x2=3.∴由此得拋物線y=x2-2x-3的大致圖象如圖所示.觀察函數(shù)圖象可知:當(dāng)x<-1或x>3時(shí),y>0.∴x2-2x-3>0的解集是:x<-1或x>3.
(1)觀察圖象,直接寫出一元二次不等式:x2-2x-3<0的解集是
-1<x<3

(2)仿照上例,用圖象法解一元二次不等式:x2-5x+6<0.(畫出大致圖象).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•峨眉山市二模)題甲:關(guān)于的一元二次方程x2+2x+k+1=0的兩實(shí)數(shù)根分別是x1和x2
(1)求k的取值范圍;
(2)如果x1+x2-x1x2<-1且k為整數(shù),求k的值.
題乙:如圖,△ABC中,AB=AC,以AB為直徑作⊙O,與BC交于點(diǎn)D,過D作AC的垂線,垂足為E.
求證:(1)BD=DC;   (2)DE與⊙O相切.
我選做的是
題甲
題甲
題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料,解答問題.
利用圖象法解一元二次不等式:x2+2x-3<0.
解:設(shè)y=x2+2x-3,則y是x的二次函數(shù).∵a=1>0,
∴拋物線開口向上.
又∵當(dāng)y=0時(shí),x2+2x-3=0,解得x1=1,x2=-3.
∴由此得拋物線y=x2+2x-3的大致圖象如圖所示.
觀察函數(shù)圖象可知:當(dāng)-3<x<1時(shí),y<0.
∴x2+2x-3<0的解集是:-3<x<1時(shí).
(1)觀察圖象,直接寫出一元二次不等式:x2+2x-3>0的解集是
x<-3或x>1
x<-3或x>1

(2)仿照上例,用圖象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解嗎?若有,求出其解集;若沒有請(qǐng)結(jié)合圖象說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江西省吉安市中考數(shù)學(xué)二模試卷(吉安縣文山學(xué)校 王輝明)(解析版) 題型:解答題

(2009•吉安二模)如圖,一元二次方程x2-2x-3=0的兩根x1,x2是拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)A、B的橫坐標(biāo),此拋物線與y軸的正半軸交于點(diǎn)C.
(1)求A、B兩點(diǎn)的坐標(biāo),并寫出拋物線的對(duì)稱軸;
(2)設(shè)點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為B′.問:是否存在△BCB′為等腰三角形的情形?若存在,請(qǐng)求出所有滿足條件c的值;若不存在,請(qǐng)直接作否定的判斷,不必說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案