作业宝已知:如圖,在等腰梯形ABCD中,AD∥BC,M、N分別為AD、BC的中點,E、F分別是BM、CM的中點.
求證:(1)△ABM≌△DCM;(2)四邊形MENF是菱形.

證明:(1)∵四邊形ABCD是等腰梯形,
∴AB=CD,∠A=∠D,
∵M是AD的中點,
∴AM=DM,
在△ABM與△DCM中,

∴△ABM≌△DCM(SAS);

(2)∵△ABM≌△DCM,
∴BM=CM,
∵M、N分別是AD、BC的中點,E、F分別是BM、CM的中點,
∴EN=CM=MF,EM=BM=FN,
∴ME=EN=NF=FM,
∴四邊形MENF是菱形.
分析:(1)先根據(jù)四邊形ABCD是等腰梯形,則AB=CD,∠A=∠D,再利用SAS證明△ABM≌△DCM,
(2)利用全等的性質(zhì)得出BM=CM,再根據(jù)三角形的中位線定理得出EN=MF,EM=FN,從而根據(jù)四條邊相等的四邊形是菱形得出結(jié)論.
點評:本題考查了菱形的判定:四條邊相等的四邊形是菱形,全等三角形的判定以及等腰梯形的性質(zhì),綜合性較強,難度中等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年河南省周口市初一下學期相交線與平行線專項訓練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當Q到達B時,P、Q兩點同時停止

運動,設P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標;若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年河南省周口市初一下學期平移專項訓練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當Q到達B時,P、Q兩點同時停止

運動,設P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標;若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

同步練習冊答案