已知關于的一元二次方程.
(1)求證:當取不等于l的實數(shù)時,此方程總有兩個實數(shù)根.
(2)若是此方程的兩根,并且,直線:交軸于點A,交軸于點B,坐標原點O關于直線的對稱點O′在反比例函數(shù)的圖象上,求反比例函數(shù)的解析式.
(3)在(2)的成立的條件下,將直線繞點A逆時針旋轉角,得到直線′,′交軸于點P,過點P作軸的平行線,與上述反比例函數(shù)的圖象交于點Q,當四邊形APQO′的面積為時,求角的值.
(1)證明
∵為關于的一元二次方程
∴,即≠1
∴△=
∴△≥0
∴當取不等于1的實數(shù)時,此方程總有兩個實數(shù)根.
∴,
(2)∵
∴
又∵、是方程的兩根
∴
∵
∴
∴直線的解析式為
∴直線與軸交點A(-3,0)與軸交點B(0,3)
∴△ABO為等腰直角三角形
∴坐標原點O關于直線的對稱點O′的坐標為(-3,3)
∴反比例函數(shù)的解析式為
(3)解:設點P的坐標為(0,P),延長PQ和AO′交于點G
∵PQ∥軸,與反比例函數(shù)圖象交于點Q
∴四邊形AOPG為矩形
∴Q的坐標為(,P)
∴G(-3,P)
當0°<<45°,即P>3時
∵GP=3,GQ=3,GO′=P-3,GA=P
∴S四邊形APQO’=S△APG-S△GQO’
=×GA×GP-×GQ×GO’
=×P×3-(3)×(P-3)
=
∴
∴P=
經(jīng)檢驗,P= 符合題意
∴P(0,)
∴AP=6
點A關于軸的對稱點A′(3,0),連結A′P,
易得AP=PA′=6,又∵AA′=6
∴AA′=AP=A′P
∴∠PAO=60°
∵∠BAO=45°
∴=∠PAO -∠BAO =60°-45°=15°
當45°≤<90°,即P<-3時,
可類似地求得P=,這與P<-3矛盾,所以此時點P不存在
∴旋轉角=15°
解析
科目:初中數(shù)學 來源: 題型:
8 |
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年廣東省九年級上學期期末考試數(shù)學試卷(解析版) 題型:計算題
已知關于的一元二次方程x2+2x+m=0.
(1)當m=3時,判斷方程的根的情況;
(2)當m=-3時,求方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年湖北省宜城市九年級第一學期期中測試數(shù)學試卷(解析版) 題型:解答題
已知關于的一元二次方程有兩個不相等的實數(shù)根.
(1)求的取值范圍;
(2)若為正整數(shù),且該方程的根都是整數(shù),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com