已知關于的一元二次方程
(1)求證:當取不等于l的實數(shù)時,此方程總有兩個實數(shù)根.
(2)若是此方程的兩根,并且,直線軸于點A,交軸于點B,坐標原點O關于直線的對稱點O′在反比例函數(shù)的圖象上,求反比例函數(shù)的解析式.
(3)在(2)的成立的條件下,將直線繞點A逆時針旋轉角,得到直線′,′交軸于點P,過點P作軸的平行線,與上述反比例函數(shù)的圖象交于點Q,當四邊形APQO′的面積為時,求角的值.

(1)證明
為關于的一元二次方程
,即≠1
∴△=
∴△≥0
∴當取不等于1的實數(shù)時,此方程總有兩個實數(shù)根.
,
(2)∵ 

又∵、是方程的兩根



∴直線的解析式為
∴直線軸交點A(-3,0)與軸交點B(0,3)
∴△ABO為等腰直角三角形
∴坐標原點O關于直線的對稱點O′的坐標為(-3,3)
∴反比例函數(shù)的解析式為
(3)解:設點P的坐標為(0,P),延長PQ和AO′交于點G
∵PQ∥軸,與反比例函數(shù)圖象交于點Q
∴四邊形AOPG為矩形
∴Q的坐標為(,P)
∴G(-3,P)
當0°<<45°,即P>3時
∵GP=3,GQ=3,GO′=P-3,GA=P
∴S四邊形APQO’=S△APGS△GQO’
×GA×GP-×GQ×GO’
×P×3-(3)×(P-3)

 
∴P=
經(jīng)檢驗,P= 符合題意
∴P(0,
∴AP=6
點A關于軸的對稱點A′(3,0),連結A′P,
易得AP=PA′=6,又∵AA′=6
∴AA′=AP=A′P
∴∠PAO=60°
∵∠BAO=45°
=∠PAO -∠BAO =60°-45°=15°
當45°≤<90°,即P<-3時,
可類似地求得P=,這與P<-3矛盾,所以此時點P不存在
∴旋轉角=15°

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

解答下列各題:
(1)計算:
8
+2(π-2009)0-4sin45°+(-1)3

(2)已知關于的一元二次方程x2+4x+k2+2k-3=0的一個根為0,求k的值和方程的另外一個根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于的一元二次方程 有實數(shù)根.

1.求的取值范圍

2.若兩實數(shù)根分別為,且的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年全國初中數(shù)學競賽題 題型:解答題

已知關于的一元二次方程的兩個整數(shù)根恰好比方程的兩個根都大1,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年廣東省九年級上學期期末考試數(shù)學試卷(解析版) 題型:計算題

已知關于的一元二次方程x2+2x+m=0.

(1)當m=3時,判斷方程的根的情況;

(2)當m=-3時,求方程的根.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年湖北省宜城市九年級第一學期期中測試數(shù)學試卷(解析版) 題型:解答題

已知關于的一元二次方程有兩個不相等的實數(shù)根.

(1)求的取值范圍;

(2)若為正整數(shù),且該方程的根都是整數(shù),求的值.

 

查看答案和解析>>

同步練習冊答案