如圖為一長方體,在圖中分別找出與棱、AD平行的棱,并用“∥”表示出來.

答案:略
解析:

,,,,,,,,


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一張邊長為16厘米的正方形硬紙板,把它的四個角都剪去一個邊長為x厘米的小正方形,然后把它折成一個無蓋的長方體,設(shè)長方體的容積為Vcm3,請回答下列問題:
(1)若用含有x的代數(shù)式表示V,則V=
x(16-2x)2
x(16-2x)2
;
(2)小明在做這個盒子時減去邊長為3厘米的小正方形,小紅在做這個盒子時減去邊長為2厘米的小正方形,算算看,誰做的盒子容積大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

知識背景:杭州留下有一處野生古楊梅群落,其野生楊梅是一種具特殊價值的綠色食品.在當(dāng)?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)

(1)實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米.
①按方案1(如圖)做一個紙箱,需要矩形硬紙板的面積是多少平方米?
②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板做一個紙箱比方案1更優(yōu),你認(rèn)為呢?請說明理由.
(2)拓展思維:城西一家水果商打算在基地購進一批“野生楊梅”,但他感覺(1)中的紙箱體積太大,搬運吃力,要求將紙箱的底面周長、底面面積和高都設(shè)計為原來的一半,你認(rèn)為水果商的要求能辦到嗎?請利用函數(shù)圖象驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省翠苑中學(xué)九年級下學(xué)期3月考數(shù)學(xué)卷(帶解析) 題型:解答題

知識背景:杭州留下有一處野生古楊梅群落,其野生楊梅是一種具特殊價值的綠色食品.在當(dāng)?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)

(1)實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米.
①按方案1(如圖)做一個紙箱,需要矩形硬紙板的面積是多少平方米?
②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板做一個紙箱比方案1更優(yōu),你認(rèn)為呢?請說明理由.
(2)拓展思維:城西一家水果商打算在基地購進一批“野生楊梅”,但他感覺(1)中的紙箱體積太大,搬運吃力,要求將紙箱的底面周長、底面面積和高都設(shè)計為原來的一半,你認(rèn)為水果商的要求能辦到嗎?請利用函數(shù)圖象驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省九年級下學(xué)期3月考數(shù)學(xué)卷(解析版) 題型:解答題

知識背景:杭州留下有一處野生古楊梅群落,其野生楊梅是一種具特殊價值的綠色食品.在當(dāng)?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)

(1)實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米.

①按方案1(如圖)做一個紙箱,需要矩形硬紙板的面積是多少平方米?

②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板做一個紙箱比方案1更優(yōu),你認(rèn)為呢?請說明理由.

 

(2)拓展思維:城西一家水果商打算在基地購進一批“野生楊梅”,但他感覺(1)中的紙箱體積太大,搬運吃力,要求將紙箱的底面周長、底面面積和高都設(shè)計為原來的一半,你認(rèn)為水果商的要求能辦到嗎?請利用函數(shù)圖象驗證.

【解析】(1)①利用寬與長的比是黃金比,取黃金比為0.6,假設(shè)底面長為x,寬就為0.6x,再利用圖形得出QM=+0.5+1+0.5+=3,F(xiàn)H=0.3+0.5+0.6+0.5+0.3=2.2,進而求出即可;

②根據(jù)菱形的性質(zhì)得出,對角線乘積的一半絕對小于矩形邊長乘積即可得出答案;

(2)根據(jù)相似三角形的性質(zhì)面積比等于相似比的平方得出即可

 

查看答案和解析>>

同步練習(xí)冊答案