【題目】已知在中,的中點,,垂足為,交于點,且

1)求的度數(shù);

2)若,,求的長.

【答案】190°21.4

【解析】

1)連接CE,根據(jù)線段垂直平分線的性質(zhì)轉(zhuǎn)化線段BE到△AEC中,利用勾股定理的逆定理可求∠A度數(shù);

2)設AEx,則AC可用x表示,在RtABC中利用勾股定理得到關于x的方程求解AE值.

1)連接CE,∵DBC的中點,DEBC,

CEBE

BE2AE2AC2

AE2AC2CE2

∴△AEC是直角三角形,∠A90°;

2)在RtBDE中,BE5

所以CEBE5

AEx,則在RtAEC中,AC2CE2AE2,

所以AC225x2

BD4,

BC2BD8

RtABC中,根據(jù)BC2AB2AC2,

64=(5x225x2,

解得x1.4

AE1.4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線分別與y軸、x軸交于點A、點B,點C的坐標為(-3,0),D為直線AB上一動點,連接CDy軸于點E.

(1) B的坐標為__________,不等式的解集為___________

(2) SCOE=SADE,求點D的坐標

(3) 如圖2,以CD為邊作菱形CDFG,且∠CDF=60°.當點D運動時,點G在一條定直線上運動,請求出這條定直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品的生產(chǎn)成本為25元,出廠價為50元.在生產(chǎn)過程中,平均每生產(chǎn)一件這種產(chǎn)品有0.5m3的污水排出.為凈化環(huán)境,該廠購買了一套污水處理設備,每處理1m3污水所需原材料費為2元,每月排污設備耗費4000元.

1)請給出該廠每月的利潤與產(chǎn)品件數(shù)的函數(shù)關系式;

2)為保證每月盈利30000元,該廠每月至少需生產(chǎn)并銷售這種產(chǎn)品多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的對角線交于點,分別在,上()且,,的延長線交于點,的延長線交于點,連接.

1)求證:.

2)若正方形的邊長為4,的中點,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象分別與軸交于兩點,正比例函數(shù)的圖象交于點

1)求的值及的解析式;

2)求的值;

3)一次函數(shù)的圖象為不能圍成三角形,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的布袋中有2個紅球和3個黑球,它們只有顏色上的區(qū)別.
(1)從布袋中隨機摸出一個球,求摸出紅球的概率;
(2)現(xiàn)從布袋中取出一個紅球和一個黑球,放入另一個不透明的空布袋中,甲乙兩人約定做如下游戲:兩人分別從這兩個布袋中各隨機摸出一個小球,若顏色相同,則甲獲勝;若顏色不同,則乙獲勝.請用樹狀圖(或列表)的方法表示游戲所有可能的結(jié)果,并用概率知識說明這個游戲是否公平?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售.某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2 , 從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元.已知該樓盤每套樓房面積均為120米2 , 若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價8%,另外每套樓房贈送a元裝修基金;
方案二:降價l0%,沒有其他贈送.
(1)請寫出售價y(元/米2)與樓層x( ,x取整數(shù))之間的函數(shù)關系式;
(2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一列有理數(shù)﹣12,﹣3,4,﹣5,6,……,如圖所示有序排列.根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,“峰6”中C的位置是有理數(shù)_____2018應排在A,B,C,DE中的_____位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ADC=72°,AD的垂直平分線交對角線BD于點P , 垂足為E , 連接CP , 求∠CPB的度數(shù).

查看答案和解析>>

同步練習冊答案