定義:a是不為1的有理數(shù),我們把
1
1-a
稱為a的差倒數(shù).
如:2的差倒數(shù)是
1
1-2
=-1
,-1的差倒數(shù)是
1
1-(-1)
=
1
2
.已知a1=-
1
3
,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類推,試探求a2009=寫出簡要的過程.
分析:首先根據(jù)定義計(jì)算前幾個(gè)數(shù),直到計(jì)算到循環(huán)時(shí),根據(jù)幾個(gè)一循環(huán),即可得到結(jié)果.
解答:解:讀懂新定義后,知道a1=-
1
3
,a2=
3
4
,a3=4,a4=-
1
3
,
很明顯,進(jìn)入一個(gè)三個(gè)數(shù)的循環(huán)數(shù)組,
只要分析2009被3整除余2即可知道,
∵2009÷3=669…2,
∴a2009=
3
4
點(diǎn)評(píng):此類題一定要找到循環(huán)的規(guī)律,根據(jù)規(guī)律進(jìn)行分析.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-單項(xiàng)式乘以多項(xiàng)式(帶解析) 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-單項(xiàng)式乘以多項(xiàng)式(解析版) 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案