(2002•蘭州)如圖,在Rt△ABC中,∠A=90°,以AB為直徑的半圓交BC于D,過D作圓的切線交AC于E.
求證:(1)AE=CE;
(2)CD•CB=4DE2

【答案】分析:(1)連接AD,根據(jù)直徑所對的圓周角是直角得到直角三角形ACD,根據(jù)切線的判定定理證明AC也是圓的切線.根據(jù)切線長定理得到AE=DE,根據(jù)等邊對等角和等角的余角相等證明CE=DE.
(2)根據(jù)切割線定理和(1)中的結(jié)論.
解答:證明:(1)連接AD;
∵AB是圓的直徑,
∴∠ADC=∠ADB=90°,
∵∠A=90°,
∴AC是圓的切線;
又∵DE是圓的切線,
∴DE=AE,
∴∠ADE=∠EAD,
∴∠C=∠CDE,
∴CE=DE,
∴AE=CE.

(2)根據(jù)切割線定理得CA2=CD•CB;
∵由(1)得CA=2DE,
∴CD•CB=4DE2
點(diǎn)評:構(gòu)造直徑所對的圓周角是圓中構(gòu)造直角三角形的一種常用方法.掌握切線長定理和切割線定理的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2002•蘭州)如圖這是某次運(yùn)動會開幕式上點(diǎn)燃火炬時在平面直角坐標(biāo)系中的示意圖,在地面有O、A兩個觀測點(diǎn),分別測得目標(biāo)點(diǎn)火炬C的仰視角為α、β,OA=2米,tanα=,tanβ=,位于點(diǎn)O正上方2米處的D點(diǎn)發(fā)射裝置,可以向目標(biāo)C發(fā)射一個火球點(diǎn)燃火炬,該火球運(yùn)行的軌跡為一拋物線,當(dāng)火球運(yùn)行到距地面最大高度20米時,相應(yīng)的水平距離為12米(圖中E點(diǎn)).
(1)求火球運(yùn)行軌跡的拋物線對應(yīng)的函數(shù)解析式;
(2)說明按(1)中軌跡運(yùn)行的火球能否點(diǎn)燃目標(biāo)C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•蘭州)如圖這是某次運(yùn)動會開幕式上點(diǎn)燃火炬時在平面直角坐標(biāo)系中的示意圖,在地面有O、A兩個觀測點(diǎn),分別測得目標(biāo)點(diǎn)火炬C的仰視角為α、β,OA=2米,tanα=,tanβ=,位于點(diǎn)O正上方2米處的D點(diǎn)發(fā)射裝置,可以向目標(biāo)C發(fā)射一個火球點(diǎn)燃火炬,該火球運(yùn)行的軌跡為一拋物線,當(dāng)火球運(yùn)行到距地面最大高度20米時,相應(yīng)的水平距離為12米(圖中E點(diǎn)).
(1)求火球運(yùn)行軌跡的拋物線對應(yīng)的函數(shù)解析式;
(2)說明按(1)中軌跡運(yùn)行的火球能否點(diǎn)燃目標(biāo)C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(01)(解析版) 題型:選擇題

(2002•蘭州)如圖,A、B、C三點(diǎn)是⊙O上的點(diǎn),∠ABO=55°,則∠BCA為( )

A.70°
B.50°
C.45°
D.35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•蘭州)如圖,已知兩個等圓⊙O1和⊙O2相交于A、B兩點(diǎn),⊙O1經(jīng)過O2,則∠O1AB=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•蘭州)如圖在△ABC中∠A=70°,⊙O截△ABC的三條邊所得的弦長相等,則∠BOC=( )

A.140°
B.135°
C.130°
D.125°

查看答案和解析>>

同步練習(xí)冊答案