如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,
且△CBE≌△CDF.
(1)圖1中的△CBE可以通過怎樣的旋轉得到△CDF;
(2)在圖1中,若G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一點,且∠DCE=45°,BE=4,求DE的長.
.(1) 的△CBE以C為旋轉中心,順時針旋轉90°得到△CDF
(2)解:GE=BE+GD成立.
理由是:
∵△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD
即∠ECF=∠BCD=90°,
又∠GCE=45°,∴∠GCF=∠GCE=45°.
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG.
∴GE=GF.
∴GE=DF+GD=BE+GD.
(3)解:過C作CG⊥AD,交AD延長線于G.
在直角梯形ABCD中,
∵AD∥BC,∴∠A=∠B=90°,
又∠CGA=90°,∠A=∠CGA ,∴AB//CG
∴四邊形ABCG平行四邊形.
∵AG=BC=12,四邊形ABCG平行四邊形.
∴AG=AB 根據(jù)(1)(2)可知,ED=BE+DG.
設DE=x,則DG=x-4,
∴AD=16-x.
在Rt△AED中, ∵,即.
解這個方程,得:x=10.
∴DE=10.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com