如圖,已知直角坐標(biāo)系中,A(0,4)、B(4,4)、C(6,2),
寫出經(jīng)過A、B、C三點(diǎn)的圓弧所在圓的圓心M的坐標(biāo):(______,______)
根據(jù)垂徑定理的推論:弦的垂直平分線必過圓心,
可以作弦AB和BC的垂直平分線,交點(diǎn)即為圓心.
如圖所示,則圓心是(2,0).
故答案為:2,0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,C是⊙O上的一點(diǎn),若AC=8cm.AB=10cm,OD⊥BC于點(diǎn)D,則BD的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD的對角線AC與BD相交于點(diǎn)O,試說明點(diǎn)B,C,D在以O(shè)為圓心、AO的長為半徑的⊙O上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是( 。
A.一個(gè)點(diǎn)可以確定一條直線
B.兩個(gè)點(diǎn)可以確定兩條直線
C.三個(gè)點(diǎn)可以確定一個(gè)圓
D.不在同一直線上的三點(diǎn)確定一個(gè)圓

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

⊙O的半徑是5cm,O到直線l的距離OP=3cm,Q為l上一點(diǎn)且PQ=4.2cm,則點(diǎn)Q(  )
A.在⊙O內(nèi)B.在⊙O上
C.在⊙O外D.以上情況都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)P是平行四邊形ABCD內(nèi)部的一點(diǎn),且∠PBA=∠PDA.
求證:∠PAB=∠PCB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

爆炸區(qū)50m內(nèi)是危險(xiǎn)區(qū),一人在離爆炸中心O點(diǎn)30m的A處(如圖),這人沿射線______的方向離開最快,離開______m無危險(xiǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),AD垂直于過點(diǎn)C的直線,垂足為D,且AC平分∠BAD.
(1)求證:CD是⊙O的切線;
(2)若AC=2
5
,CD=2,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長線分別交半圓O于點(diǎn)C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當(dāng)點(diǎn)P在半圓周上時(shí),也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫出來.

查看答案和解析>>

同步練習(xí)冊答案