【題目】如圖,P上的一點(diǎn),EF分別是邊,的中點(diǎn),,,的面積分別為S,,若,則______.

【答案】8

【解析】

PPQ平行于DC,由DCAB平行,得到PQ平行于AB,可得出四邊形PQCDABQP都為平行四邊形,進(jìn)而確定出PDCPCQ面積相等,PQBABP面積相等,再由EFBPC的中位線,利用中位線定理得到EFBC的一半,且EF平行于BC,得出PEFPBC相似,相似比為12,面積之比為14,求出PBC的面積,而PBC面積=CPQ面積+PBQ面積,即為PDC面積+PAB面積,即為平行四邊形面積的一半,即可求出所求的面積.

PPQDCBC于點(diǎn)Q,DCAB,得到PQAB,

∴四邊形PQCD與四邊形APQB都為平行四邊形,

∴△PDC≌△CQP,ABP≌△QPB

S =S ,S =S ,

EFPCB的中位線,

EFBC,EF=12BC

∴△PEF∽△PBC,且相似比為1:2

S :S =1:4,S =2,

S =S +S =S +S =+=8.

故答案為:8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,對稱軸為直線x=2,點(diǎn)A的坐標(biāo)為(10).

1)求該拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);

2)點(diǎn)P為拋物線上一點(diǎn)(不與點(diǎn)A重合),聯(lián)結(jié)PC.當(dāng)∠PCB=ACB時(shí),求點(diǎn)P的坐標(biāo);

3)在(2)的條件下,將拋物線沿平行于軸的方向向下平移,平移后的拋物線的頂點(diǎn)為點(diǎn)D,點(diǎn)P關(guān)于x軸的對應(yīng)點(diǎn)為點(diǎn)Q,當(dāng)ODDQ時(shí),求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx3經(jīng)過點(diǎn)A2,﹣3),與x軸負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC3OB

1)求拋物線的解析式;

2)拋物線的對稱軸上有一點(diǎn)P,使PB+PC的值最小,求點(diǎn)P的坐標(biāo);

3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,是否存在以點(diǎn)AB,MN為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx22x3x軸分別交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,頂點(diǎn)為D

1)如圖1,求BCD的面積;

2)如圖2P是拋物線BD段上一動(dòng)點(diǎn),連接CP并延長交x軸于E,連接BDPCF,當(dāng)CDF的面積與BEF的面積相等時(shí),求點(diǎn)E和點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A2,3),B(﹣3,n)兩點(diǎn).

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)根據(jù)所給條件,請直接寫出不等式kx+b的解集;

3)過點(diǎn)BBCx軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y = ax2+bx-3經(jīng)過A、B、C三點(diǎn),己知點(diǎn)A(-3,0)C (1, 0).

1)求此拋物線的解析式.

2)點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn)(不與A、B重合),

①過點(diǎn)Fx軸的垂線,垂足為D,交直線AB于點(diǎn)E,動(dòng)點(diǎn)P在什么位置時(shí),PE最大, 出此時(shí)P點(diǎn)的坐標(biāo).

②如圖2,連接AP.AP為邊作圖示一側(cè)的正方形APMN,當(dāng)它恰好有一個(gè)頂點(diǎn)落在拋物 線對稱軸上時(shí),求出對應(yīng)的P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,如圖是二次函數(shù)yax2+bx+ca≠0)的圖象的一部分,給出下列命題:①a+b+c0;②b2a;③方程ax2+bx+c0的兩根分別為﹣31;④b24ac0,其中正確的命題有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+ca≠0)的圖象如圖,則下列結(jié)論中正確的是( 。

A.ab0B.a+b+2c20C.b24ac0D.2ab0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校喜迎中華人民共和國成立70周年,將舉行以歌唱祖國為主題的歌詠比賽,需要在文具店購買國旗圖案貼紙和小紅旗發(fā)給學(xué)生做演出道具.已知?dú)按N紙有50張,毎袋小紅旗有20面,貼紙和小紅旗需整袋購買,每袋貼紙價(jià)格比每袋小紅旗價(jià)格少5元,用150元購買貼紙所得袋數(shù)與用200元購買小紅旗所得袋數(shù)相同.

1)求每袋國旗圖案貼紙和每袋小紅旗的價(jià)格各是多少元?

2)如果給每位演出學(xué)生分發(fā)國旗圖案貼紙2張,小紅旗1面.設(shè)購買國旗圖案貼紙袋(為正整數(shù)),則購買小紅旗多少袋能恰好配套?請用含的代數(shù)式表示.

3)在文具店累計(jì)購物超過800元后,超出800元的部分可享受8折優(yōu)惠.學(xué)校按(2)中的配套方案購買,共支付元,求關(guān)于的函數(shù)關(guān)系式.現(xiàn)全校有1200名學(xué)生參加演出,需要購買國旗圖案貼紙和小紅旗各多少袋?所需總費(fèi)用多少元?

查看答案和解析>>

同步練習(xí)冊答案