聯(lián)想三角形外心的概念,我們可引入如下概念:定義:到三角形的兩個頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.

舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心.

(1)應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=,求∠APB的度數(shù).

(2)探究:如圖3,已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長.

 

 

【答案】

(1)90°;(2)PA=2或PA=.

【解析】

試題分析:(1)連接PA、PB,根據(jù)準(zhǔn)外心的定義,分①PB=PC,②PA=PC,③PA=PB三種情況利用等邊三角形的性質(zhì)求出PD與AB的關(guān)系,然后判斷出只有情況③是合適的,再根據(jù)等腰直角三角形的性質(zhì)求出∠APB=45°,然后即可求出∠APB的度數(shù);

(2)先根據(jù)勾股定理求出AC的長度,根據(jù)準(zhǔn)外心的定義,分①PB=PC,②PA=PC,③PA=PB三種情況,根據(jù)三角形的性質(zhì)計(jì)算即可得解.

試題解析:(1)∵CD是等邊三角形ABC的高

∴∠ADC=∠BDC=90°,AD=BD

∵PD=AB

∴PD=AD=BD

又∵∠ADC=∠BDC=90°

∴∠APD=∠BPD=45°

∴∠APB=90°

(2)∵△ABC為直角三角形,斜邊BC=5,AB=3

∴AC=4.

①若PA=PB,在Rt△ABC中不可能,排除;

②若PA=PC則PA=2;

③若PB=PC,連接PB,設(shè)PA=x,則PB=PC=4-x

在Rt△ABP中有,即

解得:,  即PA=

綜上所述:PA=2或PA=

考點(diǎn): 1.線段垂直平分線的性質(zhì);2.等邊三角形的性質(zhì);3.等腰直角三角形.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•紹興)聯(lián)想三角形外心的概念,我們可引入如下概念.
定義:到三角形的兩個頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.
舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心.
應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=
12
AB,求∠APB的度數(shù).
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(浙江紹興卷)數(shù)學(xué)(帶解析) 題型:解答題

聯(lián)想三角形外心的概念,我們可引入如下概念。
定義:到三角形的兩個頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心。

舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心。
應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=AB,求∠APB的度數(shù)。
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省中考真題 題型:解答題

聯(lián)想三角形外心的概念,我們可引入如下概念。定義:到三角形的兩個頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心。舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心。應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=AB,求∠APB的度數(shù)。探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省紹興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

聯(lián)想三角形外心的概念,我們可引入如下概念.
定義:到三角形的兩個頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.
舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心.
應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=AB,求∠APB的度數(shù).
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長.

查看答案和解析>>

同步練習(xí)冊答案