(2002•重慶)如圖,AB是⊙O的直徑,四邊形ABCD內(nèi)接于⊙O,弧BC,弧CD,弧AD的度數(shù)比為3:2:4,MN是⊙O的切線,C是切點(diǎn),則∠BCM的度數(shù)為    度.
【答案】分析:連接OC,則∠OCM=90°,由弧BC,弧CD,弧AD的度數(shù)比為3:2:4,可求∠BOC=60°;又因?yàn)镺B=OC,可求得∠OBC=∠OCB=(180°-∠BOC)=(180°-60°)=60°,即可求∠BCM=∠OCM-∠OCB=90°-60°=30°.
解答:解:連接OC,
則∠OCM=90°,
∵弧BC、弧CD、弧AD的度數(shù)比為3:2:4;
設(shè)=3x,則=2x,=4x,
++=180°,
即3x+2x+4x=180°,
解得x=20°,3x=60°,即∠BOC=60°,
∵OB=OC,
∴∠OBC=∠OCB=(180°-∠BOC)=(180°-60°)=60°,
∠BCM=∠OCM-∠OCB=90°-60°=30°.
點(diǎn)評(píng):本題考查了切線的性質(zhì)及圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•重慶)如圖,已知兩點(diǎn)A(-8,0),C(4,0),以AB為直徑的半圓與y軸正半軸交于點(diǎn)C.
(1)求過(guò)A、C兩點(diǎn)的直線的解析式和經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)若點(diǎn)D是(1)中拋物線的頂點(diǎn),求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年重慶市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•重慶)如圖,已知兩點(diǎn)A(-8,0),C(4,0),以AB為直徑的半圓與y軸正半軸交于點(diǎn)C.
(1)求過(guò)A、C兩點(diǎn)的直線的解析式和經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)若點(diǎn)D是(1)中拋物線的頂點(diǎn),求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2002•重慶)如圖,AM是⊙O的直徑,過(guò)⊙O上一點(diǎn)B作BN⊥AM,垂足為N,其延長(zhǎng)線交⊙O于點(diǎn)C,弦CD交AM于點(diǎn)E.
(1)如果CD⊥AB,求證:EN=NM;
(2)如果弦CD交AB于點(diǎn)F,且CD=AB,求證:CE2=EF•ED;
(3)如果弦CD、AB的延長(zhǎng)經(jīng)線交于點(diǎn)F,且CD=AB,那么(2)的結(jié)論是否仍成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(05)(解析版) 題型:填空題

(2002•重慶)如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,弧AB+弧CD=弧AD+弧BC,若AD=4,BC=6,則四邊形ABCD的面積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案