【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,OD⊥BC于點D,過點C作⊙O的切線,交OD的延長線于點E,連接BE.
(1)求證:BE與⊙O相切;
(2)設(shè)OE交⊙O于點F,若DF=1,BC=2 ,求陰影部分的面積.
【答案】
(1)證明:連接OC,如圖,
∵CE為切線,
∴OC⊥CE,
∴∠OCE=90°,
∵OD⊥BC,
∴CD=BD,
即OD垂中平分BC,
∴EC=EB,
在△OCE和△OBE中
,
∴△OCE≌△OBE,
∴∠OBE=∠OCE=90°,
∴OB⊥BE,
∴BE與⊙O相切
(2)解:設(shè)⊙O的半徑為r,則OD=r﹣1,
在Rt△OBD中,BD=CD= BC= ,
∴(r﹣1)2+( )2=r2,解得r=2,
∵tan∠BOD= = ,
∴∠BOD=60°,
∴∠BOC=2∠BOD=120°,
在Rt△OBE中,BE= OB=2 ,
∴陰影部分的面積=S四邊形OBEC﹣S扇形BOC
=2S△OBE﹣S扇形BOC
=2× ×2×2 ﹣
=4 ﹣ π
【解析】(1)連接OC,如圖,利用切線的性質(zhì)得∠OCE=90°,再根據(jù)垂徑定理得到CD=BD,則OD垂中平分BC,所以EC=EB,接著證明△OCE≌△OBE得到∠OBE=∠OCE=90°,然后根據(jù)切線的判定定理得到結(jié)論;(2)設(shè)⊙O的半徑為r,則OD=r﹣1,利用勾股定理得到(r﹣1)2+( )2=r2 , 解得r=2,再利用三角函數(shù)得到∠BOD=60°,則∠BOC=2∠BOD=120°,接著計算出BE= OB=2 , 然后根據(jù)三角形面積公式和扇形的面積公式,利用陰影部分的面積=2S△OBE﹣S扇形BOC進(jìn)行計算即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ中PQ的長度等于5cm?
(3)在(1)中,當(dāng)P,Q出發(fā)幾秒時,△PBQ有最大面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD平分∠BAC交BC于點D,點F在BA的延長線上,點E在線段CD上,EF與AC相交于點G,∠BDA+∠CEG=180°.
(1)AD與EF平行嗎?請說明理由;
(2)若點H在FE的延長線上,且∠EDH=∠C,若∠F=40°,求∠H的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰直角△ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓⊙O的直徑
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,同時將點A(﹣1,0)、B(3,0)向上平移2個單位長度再向右平移1個單位長度,分別得到A、B的對應(yīng)點C、D.連接AC,BD
(1)求點C、D的坐標(biāo),并描出A、B、C、D點,求四邊形ABDC面積;
(2)在坐標(biāo)軸上是否存在點P,連接PA、PC使S△PAC=S四邊形ABCD?若存在,求點P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC是⊙O的直徑,點D為BC延長線上的一點,點A為圓上一點,且AB=AD,AC=CD.
(1)求證:△ACD∽△BAD;
(2)求證:AD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是 ,證明你的結(jié)論.
(2)當(dāng)四邊形ABCD的對角線滿足 條件時,四邊形EFGH是矩形;
(3)你學(xué)過的哪種特殊四邊形的中點四邊形是矩形? .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進(jìn)A、B兩種花草,第一次分別購進(jìn)A、B兩種花草30棵和15棵,共花費675元;第二次分別購進(jìn)A、B兩種花草12棵和5棵兩次共花費940元兩次購進(jìn)的A、B兩種花草價格均分別相同.
、B兩種花草每棵的價格分別是多少元?
若再次購買A、B兩種花草共12棵、B兩種花草價格不變,且A種花草的數(shù)量不少于B種花草的數(shù)量的4倍,請你給出一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的腰長為6cm,底邊長為4cm,以等腰三角形的頂角的頂點為圓心5cm為半徑畫圓,那么該圓與底邊的位置關(guān)系是( )
A.相離
B.相切
C.相交
D.不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com