在平面直角坐標系xOy中,已知關于x的二次函數(shù)y=x2+(k-1)x+2k-1的圖象與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,其中k是一元二次方程p2-p-2=0的根,且k<0.
(1)求這個二次函數(shù)的解析式及A、B兩點的坐標;
(2)若直線l:y=mx(m≠0)與線段BC交于點D(點D不與點B、C重合),則是否存在這樣的直線l,使得以B、O、D為頂點的三角形與△ABC相似?若存在,求出該直線的解析式及點D的坐標;若不存在,請說明理由.
(1)∵k是方程p2-p-2=0的根,
∴k=-1,或k=2.
又k<0,
∴k=-1.
∴此二次函數(shù)的解析式為:y=x2-2x-3.
令y=0得x1=-1,x2=3
∵點A在點B的左側
∴A(-1,0),B(3,0).

(2)假設滿足條件的直線l存在
過點D作DE⊥x軸于點E
∵點A的坐標為(-1,0),點B的坐標為(3,0),點C的坐標為(0,-3)
∴AB=4,OB=OC=3,∠OBC=45°
∴BC=3
2

要使以B、O、D為頂點的三角形與△ABC相似,已有∠OBD=∠ABC,
則只需
OB
AB
=
DB
CB
①,或
OB
CB
=
DB
AB
②成立即可.
①當
OB
AB
=
DB
CB

有BD=
OB•BC
AB
=
9
2
4

在Rt△BDE中,
DE=BD•sin45°=
9
4
,BE=BD•cos45°=
9
4

∴OE=OB-BE=3-
9
4
=
3
4

∵點D在x軸的下方,
∴點D的坐標為(
3
4
-
9
4
).
將點D的坐標代入l:y=mx(m≠0)中,求得m=-3
∴滿足條件的直線l的函數(shù)解析式為y=-3x.

②當
OB
BC
=
DB
AB

有BD=
OB•AB
BC
=2
2

同理可得:BE=DE=2,OE=OB-BE=3-2=1
∵點D在x軸下方
∴點D的坐標為(1,-2).
將點D的坐標代入y=mx(m≠0)中,求得m=-2
∴滿足條件的直線l的函數(shù)解析式為y=-2x.
∴綜上所述滿足條件的直線l的解析式是:y=-3x或y=-2x;
點D的坐標為(
3
4
,-
9
4
)或(1,-2).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(-3,0),與y軸交于點C,點D(-2,-3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)點G拋物線上的動點,在x軸上是否存在點E,使B、D、E、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一次函數(shù)y=-2x的圖象與二次函數(shù)y=-x2+3x圖象的對稱軸交于點B.
(1)寫出點B的坐標______;
(2)已知點P是二次函數(shù)y=-x2+3x圖象在y軸右側部分上的一個動點,將直線y=-2x沿y軸向上平移,分別交x軸、y軸于C、D兩點.若以CD為直角邊的△PCD與△OCD相似,則點P的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中Rt△AOB≌Rt△CDA,且A(-1,0),B(0,2)拋物線y=ax2+ax-2經過點C.
(1)求拋物線的解析式;
(2)在拋物線(對稱軸的右側)上是否存在兩點P、Q,使四邊形ABPQ為正方形?若存在,求點P、Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線y=
1
3
x+1與x軸交于點A,與y軸交于點B,將△AOB繞點O順時針旋轉90°后得到△COD.
(1)點C的坐標是______線段AD的長等于______;
(2)點M在CD上,且CM=OM,拋物線y=x2+bx+c經過點C,M,求拋物線的解析式;
(3)如果點E在y軸上,且位于點C的下方,點F在直線AC上,那么在(2)中的拋物線上是否存在點P,使得以C,E,F(xiàn),P為頂點的四邊形是菱形?若存在,請求出該菱形的周長l;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象以A(-1,4)為頂點,且過點B(2,-5)
①求該函數(shù)的關系式;
②求該函數(shù)圖象與坐標軸的交點坐標;
③將該函數(shù)圖象向右平移,當圖象經過原點時,A、B兩點隨圖象移至A′、B′,求△OA′B′的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一座拋物線拱橋架在一條河流上,這座拱橋下的水面離橋孔頂部3m時,水面寬6m,當水位上升1m時,水面寬多少m(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有一個拋物線形的拱形橋洞,橋洞離水面的最大高度為4m,跨度為10m,建立如圖所示的平面直角坐標系.
(1)求這條拋物線所對應的函數(shù)關系式;
(2)在對稱軸右邊1m處,橋洞離水面的高是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某玩具廠授權生產工藝品福娃,每日最高產量為30只,且每日生產的產品全部出售.已知生產x只福娃的成本為R(元),每只售價P(元),且R,P與x的表達式分別為R=50+3x,P=170-2x.當日產量為多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

同步練習冊答案