【題目】已知,如圖1,拋物線y=ax2+bx+3與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)A,且AO=CO,BC=4.
(1)求拋物線解析式;
(2)如圖2,點(diǎn)P是拋物線第一象限上一點(diǎn),連接PB交y軸于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段OQ長為d,求d與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,過點(diǎn)Q作直線l⊥y軸,在l上取一點(diǎn)M(點(diǎn)M在第二象限),連接AM,使AM=PQ,連接CP并延長CP交y軸于點(diǎn)K,過點(diǎn)P作PN⊥l于點(diǎn)N,連接KN、CN、CM.若∠MCN+∠NKQ=45°時(shí),求t值.
【答案】(1)y=﹣x2+2x+3(2)d=﹣t+3(0<t<3)(3)
【解析】試題分析:(1)先令x=0代入拋物線的解析式中求得與y軸交點(diǎn)A的坐標(biāo),根據(jù)OA=OC可得C的坐標(biāo),從而得B的坐標(biāo),利用待定系數(shù)法求拋物線解析式;
(2)如圖2,設(shè)P(t,-t2+2t+3)(0<t<3),證明△BOQ∽△BGP,列比例式可得結(jié)論;
(3)如圖3,作輔助線,構(gòu)建全等三角形和等腰直角三角形,先得QN=OG=AQ=t,則△AQN是等腰直角三角形,得AN=t,由PG∥OK,得,,求得AK=3t,證明△NGC是等腰直角三角形,及△AKN∽△NMC,則,代入可得t的值,并根據(jù)(2)中的點(diǎn)P只在第一象限進(jìn)行取舍.
解:(1)如圖1,當(dāng)x=0時(shí),y=3,
∴A(0,3),
∴OA=OC=3,
∵BC=4,
∴OB=1,
∴B(﹣1,0),C(3,0),
把B(﹣1,0),C(3,0)代入拋物線y=ax2+bx+3中得:,
解得:,
∴拋物線的解析式為:y=﹣x2+2x+3;
(2)如圖2,設(shè)P(t,﹣t2+2t+3)(0<t<3),
過P作PG⊥x軸于G,
∵OQ∥PG,
∴△BOQ∽△BGP,
∴,
∴,
∴d==﹣t+3(0<t<3);
(3)如圖3,連接AN,延長PN交x軸于G,
由(2)知:OQ=3﹣t,OA=3,
∴AQ=OA﹣OQ=3﹣(3﹣t)=t,
∴QN=OG=AQ=t,
∴△AQN是等腰直角三角形,
∴∠QAN=45°,AN=t,
∵PG∥OK,
∴,
∴,
OK=3t+3,
AK=3t,
∵∠QAN=∠NKQ+∠ANK,
∴∠NKQ+∠ANK=45°,
∵∠MCN+∠NKQ=45°,
∴∠ANK=∠MCN,
∵NG=CG=3﹣t,
∴△NGC是等腰直角三角形,
∴NC=(3﹣t),∠GNC=45°,
∴∠CNH=∠NCM+∠NMC=45°,
∴∠NKQ=∠NMC,
∴△AKN∽△NMC,
∴,
∵AQ=QN=t,AM=PQ,
∴Rt△AQM≌△Rt△QNP(HL),
∴MQ=PN=﹣t2+2t+3﹣(3﹣t)=﹣t2+3t,
∴,
t2﹣7t+9=0,
t1=>3,t2=,
∵0<t<3,
∴t1>3,不符合題意,舍去,
∴t=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上的點(diǎn)A對(duì)應(yīng)的數(shù)為6,B是數(shù)軸上的一點(diǎn),且AB=10,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長度的速度沿著數(shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是_______,點(diǎn)P對(duì)應(yīng)的數(shù)是_______(用t的式子表示);
(2)動(dòng)點(diǎn)Q從點(diǎn)B與點(diǎn)P同時(shí)出發(fā),以每秒4個(gè)單位長度的速度沿著數(shù)軸向左勻速運(yùn)動(dòng),試問:運(yùn)動(dòng)多少時(shí)間點(diǎn)P可以追上點(diǎn)Q?
(3)M是AP的中點(diǎn),N是PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長度是否發(fā)生變化?若有變化,說明理由;若沒有變化,請(qǐng)你畫出圖形,并求出MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),延長ME交CD的延長線于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形.
(2)當(dāng)AM的值為何值時(shí),四邊形AMDN是矩形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校校園超市老板到批發(fā)中心選購甲、乙兩種品牌的文具盒,乙品牌的進(jìn)貨單價(jià)是甲品牌進(jìn)貨單價(jià)的2倍,考慮各種因素,預(yù)計(jì)購進(jìn)乙品牌文具盒的數(shù)量y(個(gè))與甲品牌文具盒的數(shù)量x(個(gè))之間的函數(shù)關(guān)系如圖所示.當(dāng)購進(jìn)的甲、乙品牌的文具盒中,甲有120個(gè)時(shí),購進(jìn)甲、乙品牌文具盒共需7200元.
(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(2)求甲、乙兩種品牌的文具盒進(jìn)貨單價(jià);
(3)若該超市每銷售1個(gè)甲種品牌的文具盒可獲利4元,每銷售1個(gè)乙種品牌的文具盒可獲利9元,根據(jù)學(xué)生需求,超市老板決定,準(zhǔn)備用不超過6300元購進(jìn)甲、乙兩種品牌的文具盒,且這兩種品牌的文具盒全部售出后獲利不低于1795元,問該超市有幾種進(jìn)貨方案?哪種方案能使獲利最大?最大獲利為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知 a b , a 與b 兩個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)分別為點(diǎn) A 、點(diǎn) B ,求 A 、 B 兩點(diǎn)之間的距離.
(探索)
小明利用絕對(duì)值的概念,結(jié)合數(shù)軸,進(jìn)行探索:
(1)補(bǔ)全小明的探索
(應(yīng)用)
(2)若點(diǎn)C 對(duì)應(yīng)的數(shù)c ,數(shù)軸上點(diǎn)C 到A、B 兩點(diǎn)的距離相等,求c .(用含a、b 的代數(shù)式表示)
(3)若點(diǎn) D對(duì)應(yīng)的數(shù) d ,數(shù)軸上點(diǎn) D 到 A 的距離是點(diǎn) D 到 B 的距離的nn 0 倍,請(qǐng)?zhí)剿?/span> n 的取值范圍與點(diǎn) D 個(gè)數(shù)的關(guān)系,并直接寫出a、b 、d、n 的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的外角∠ACD的平分線CP與內(nèi)角∠ABC的平分線BP交于點(diǎn)P,若∠BPC=40°,則∠CAP=( 。
A. 40°B. 45°C. 50°D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某市舉辦的“劃龍舟,慶端午”比賽中,甲、乙兩隊(duì)在比賽時(shí)的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象得到下列結(jié)論,其中錯(cuò)誤的是( )
A.這次比賽的全程是500米
B.乙隊(duì)先到達(dá)終點(diǎn)
C.比賽中兩隊(duì)從出發(fā)到1.1分鐘時(shí)間段,乙隊(duì)的速度比甲隊(duì)的速度快
D.乙與甲相遇時(shí)乙的速度是375米/分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC的邊AB上一點(diǎn),CE∥AB,DE交AC于點(diǎn)F,若FA=FC.
(1)求證:四邊形ADCE是平行四邊形;
(2)若AE⊥EC,EF=EC=1,求四邊形ADCE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com