如圖,已知一次函數(shù)y1=k1x+6與反比例函數(shù)y2=
k2x
(x>0)的圖象交于點(diǎn)A、B,且A、B兩點(diǎn)的橫坐標(biāo)分別為2和4.
(1)k1=
-1
-1
,k2=
8
8

(2)求點(diǎn)A、B、O所構(gòu)成的三角形的面積;
(3)對(duì)于x>0,試探索y1與y2的大小關(guān)系(直接寫(xiě)出結(jié)果).
分析:(1)圖象交于點(diǎn)A、B,且A、B兩點(diǎn)的橫坐標(biāo)分別為2和4,當(dāng)x=2或x=4時(shí),兩個(gè)函數(shù)的函數(shù)值相等,據(jù)此即可得到方程組,從而求解;
(2)首先求得A、B的坐標(biāo),然后根據(jù)S△OAB=S△OAC-S△OCB從而求解;
(3)根據(jù)函數(shù)的性質(zhì),結(jié)合圖象即可直接寫(xiě)出結(jié)果.
解答:解:(1)根據(jù)題意得:
2k1+6=
k2
2
4k1+6=
k2
4
,
解得:k1=-1,k2=8;

(2)把x=2代入y=-x+6得y=4,則A(2,4),
把x=4代入y=-x+6得:y=2,則B(4,2).  
在y=-x+6中,令x=0,解得:y=6,則直線與y軸交點(diǎn)為C(0,6).
在OC=6.
則:S△OAB=S△OCB-S△OAC=
1
2
OC×4-
1
2
OC×2=
1
2
×6×4-
1
2
×6×2=6;

(3)當(dāng)0<x<2和x>4時(shí),y1<y2,;
當(dāng)2<x<4時(shí),y1>y2,
當(dāng)x=2或4時(shí),y1=y2
點(diǎn)評(píng):本題綜合考查反比例函數(shù)與方程組的相關(guān)知識(shí)點(diǎn).先由點(diǎn)的坐標(biāo)求函數(shù)解析式,然后解由解析式組成的方程組求出交點(diǎn)的坐標(biāo),體現(xiàn)了數(shù)形結(jié)合的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
ax
的圖象交于A(2,4)和精英家教網(wǎng)B(-4,m)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫(xiě)出,當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=-
8x
的圖象交于A,B點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.求:
(1)求A、B兩點(diǎn)坐標(biāo);
(2)求一次函數(shù)的解析式;
(3)根據(jù)圖象直接寫(xiě)出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
(4)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新疆)如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)y2=
mx
的圖象交于A(2,4)、B(-4,n)兩點(diǎn).
(1)分別求出y1和y2的解析式;
(2)寫(xiě)出y1=y2時(shí),x的值;
(3)寫(xiě)出y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y=k1x+b經(jīng)過(guò)A、B兩點(diǎn),將點(diǎn)A向上平移1個(gè)單位后剛好在反比例函數(shù)y=
k2x
上.
(1)求出一次函數(shù)解析式.
(2)求出反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=
4-2m
x
的圖象交于點(diǎn)A、B,交x軸于點(diǎn)C.
(1)求m的取值范圍;
(2)若點(diǎn)A的坐標(biāo)是(2,-4),且
BC
AB
=
1
3
,求m的值和一次函數(shù)的解析式;
(3)根據(jù)圖象,寫(xiě)出當(dāng)反比例函數(shù)的值小于一次函數(shù)的值時(shí)x 的取值范圍?

查看答案和解析>>

同步練習(xí)冊(cè)答案