若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長為,面積為,則的函數(shù)關(guān)系式為: ﹥0),利用函數(shù)的圖象或通過配方均可

求得該函數(shù)的最大值.

提出新問題

若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(小)值是多少?

分析問題

若設(shè)該矩形的一邊長為,周長為,則的函數(shù)關(guān)系式為:

﹥0),問題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗.

解決問題

借鑒我們已有的研究函數(shù)的經(jīng)驗,探索函數(shù)﹥0)的最大(。┲.

(1)實踐操作:填寫下表,并用描點法畫出函數(shù)﹥0)的圖象:

                           

(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)=         時,函數(shù)﹥0)

有最    值(填“大”或“小”),是          .

(3)推理論證:問題背景中提到,通過配方可求二次函數(shù)﹥0)的最

大值,請你嘗試通過配方求函數(shù)﹥0)的最大(。┲,以證明你的

猜想. 〔提示:當(dāng)>0時,

 (1)

(2)1、小、4…

(3)證明:

當(dāng)時,的最小值是4

=1時,的最小值是4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,M是BC的中點,MA⊥MD,若矩形的周長為48cm,則矩形ABCD的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

51、(1)圖(1)是一個長為2m,寬為2n的矩形,把此矩形沿圖中虛線用剪刀均分為四個小長方形,然后按圖(2)的形狀拼成一個正方形,請問:這兩個圖形的什么量不變所得的正方形的面積比原矩形的面積多出的陰影部分的面積用含m,n的代數(shù)式可表示為
(m-n)2=m2-2mn+n2
;
(2)由(1)的探索可得出的結(jié)論是:在周長一定的矩形中,
長和寬相等
時,面積最大;
(3)若矩形的周長為24cm,則當(dāng)邊長為多少時,該圖形的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•達州)【問題背景】
若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
1
2
x(x
>0),利用函數(shù)的圖象或通過配方均可求得該函數(shù)的最大值.
【提出新問題】
若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(。┲凳嵌嗌伲
【分析問題】
若設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
1
x
)
(x>0),問題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
【解決問題】
借鑒我們已有的研究函數(shù)的經(jīng)驗,探索函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担
(1)實踐操作:填寫下表,并用描點法畫出函數(shù)y=2(x+
1
x
)
(x>0)的圖象:
 x  
1
4
 
1
3
 
1
2
 1  2  3  4
 y              
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=
1
1
時,函數(shù)y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理論證:問題背景中提到,通過配方可求二次函數(shù)s=-x2+
1
2
x(x
>0)的最大值,請你嘗試通過配方求函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲,以證明你的猜想.〔提示:當(dāng)x>0時,x=(
x
)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:
若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
1
2
x
(x>0),利用函數(shù)的圖象或通過配方均可求得該函數(shù)的最大值.
提出新問題:
若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(。┲凳嵌嗌伲
分析問題:
若設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
1
x
)
(x>0),問題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
解決問題:
借鑒我們已有的研究函數(shù)的經(jīng)驗,探索函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担
(1)實踐操作:填寫下表,并用描點法畫出函數(shù)y=2(x+
1
x
)
(x>0)的圖象:
x 1/4 1/3 1/2 1 2 3 4
y
17
2
20
3
5 4 5
20
3
17
2
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=
1
1
時,函數(shù)y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理論證:問題背景中提到,通過配方可求二次函數(shù)s=-x2+
1
2
x
(x>0)的最大值,請你嘗試通過配方求函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲,以證明你的猜想.〔提示:當(dāng)x>0時,x=(
x
)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)圖(1)是一個長為2m,寬為2他的矩形,把此矩形沿圖中虛線用剪刀均分為四個小長方形,然后按圖(2)的形狀拼成一個大正方形.請問:這兩個圖形的什么量不變?
(2)把所得的大正方形面積比原矩形的面積多出的陰影部分的面積用含m,n的代數(shù)式表示為
(m-n)2或m2-2mn+n2
(m-n)2或m2-2mn+n2

(3)由前面的探索可得出的結(jié)論是:在周長一定的矩形中,當(dāng)
長和寬相等
長和寬相等
時,面積最大.
(4)若矩形的周長為24cm,則當(dāng)邊長為多少時,該圖形的面積最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案