如圖,矩形紙片ABCD中,BC=4,AB=3,點(diǎn)P是BC邊上的動點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合).現(xiàn)將△PCD沿PD翻折,得到△PC’D;作∠BPC’的角平分線,交AB于點(diǎn)E.設(shè)BP= x,BE= y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A、 B、 C、 D、
D.
【解析】
試題分析:根據(jù)題意,連接DE,因?yàn)椤鱌CD沿PD翻折,得到△PC′D,故有DP平分∠CPC′;又PE為∠BPC′的角平分線,可推知∠EPD=90°,又因?yàn)锽P=x,BE=y,BC=4,AB=3,分別用x和y表示出PD和EP和DE,在Rt△PED中利用勾股定理,即可得出一個(gè)關(guān)于x和y的關(guān)系式,化簡即可:
如圖,連接DE,
∵△PCD沿PD翻折,得到△PC′D,∴DP平分∠CPC′.
又∵PE為∠BPC′的角平分線,∴∠EPD=90°.
∵BP=x,BE=y,BC=4,AB=3,
∴Rt△PCD中,PC=4-x,DC=3,故,
在Rt△EBP中,BP=x,BE=y,故PE2=x2+y2,
在Rt△ADE中,AE=3-y,AD=4,故,
在Rt△PDE中,DE2=PD2+PE2,即,化簡得:.
結(jié)合題意,它是開口向下的拋物線,只有選項(xiàng)D符合題意.
故選D.
考點(diǎn):1.動點(diǎn)問題的函數(shù)圖象;2.翻折問題;3.勾股定理;4.數(shù)形結(jié)合思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:第25章《圖形的變換》中考題集(30):25.3 軸對稱變換(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com