【題目】如圖,在梯形ABCD中,ABDC,過對角線AC的中點O作EFAC,分別交邊AB、CD于點E、F,連接CE、AF.

(1)求證:四邊形AECF是菱形;

(2)若EF=4,tanOAE=,求四邊形AECF的面積.

【答案】(1)證明詳見解析;(2)20.

【解析】

試題分析:(1)運(yùn)用“對角線互相垂直平分的四邊形是菱形”判定,已知EFAC,AO=OC,只需要證明OE=OF即可,用全等三角形得出;

(2)菱形的面積可以用對角線積的一半來表示,由已知條件,解直角三角形AOE可求AC、EF的長度.

試題解析:(1)證明:方法1:

ABDC,

∴∠1=2.

CFO和AEO中,1=2,FOC=EOA,OC=OA,

∴△CFO≌△AEO

OF=OE,

OA=OC,

四邊形AECF是平行四邊形.

EFAC,

四邊形AECF是菱形.

方法2:證AEO≌△CFO同方法1,

CF=AE,

CFAE,

四邊形AFCE是平行四邊形.

OA=OC,EFAC,

EF是AC的垂直平分線,

AF=CF,

四邊形AECF是菱形.

(2)解:四邊形AECF是菱形,EF=4,

OE=EF=×4=2.

在RtAEO中,

tanOAE=

OA=5,

AC=2AO=2×5=10.

=EFAC=×4×10=20.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上表示a的點移動3個單位后與2重合,則a﹣3的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有( ) ①對頂角相等;②相等的角是對頂角;③若兩個角不相等,則這兩個角一定不是對頂角;④若兩個角不是對頂角,則這兩個角不相等.2·1·c·n·j·y
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果|x+1|+y+120,那么代數(shù)式x2017y2018的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某軍事行動中,對軍隊部署的方位,采用代碼的方式來表示.例如,北偏東30°方向45km的位置與鐘面相結(jié)合,以鐘面圓心為基準(zhǔn),時針指向北偏東30°的時刻是1∶00,那么這個地點就用代 碼010045表示.按這種表示方式,南偏東40°方向78km的位置,可用代碼表示為..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2﹣4x﹣4的頂點坐標(biāo)為(
A.(2,﹣8)
B.(2,8)
C.(﹣2,8)
D.(﹣2,﹣8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)數(shù)學(xué)愛好者小森偶然閱讀到這樣一道競賽題:

一個圓內(nèi)接六邊形ABCDEF,各邊長度依次為 3,3,35,5,5,求六邊形ABCDEF的面積.

小森利用同圓中相等的弦所對的圓心角相等這一數(shù)學(xué)原理,將六邊形進(jìn)行分割重組,得到圖.可以求出六邊形ABCDEF的面積等于

2)類比探究:一個圓內(nèi)接八邊形,各邊長度依次為22,22,3,3,3,3.求這個八邊形的面積.請你仿照小森的思考方式,求出這個八邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是一個長為2x、寬為2y的長方形,沿圖中虛線用剪刀剪成四個完全相同的小長方形,然后按圖2所示拼成一個正方形.

(1)你認(rèn)為圖2中的陰影部分的正方形的邊長等于
(2)試用兩種不同的方法求圖2中陰影部分的面積.
方法1: 方法2:
(3)根據(jù)圖2你能寫出下列三個代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(x+y)2,(x-y)2,4xy

(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:
x+y=4,xy=3,則(x-y)2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月,某中學(xué)以“每天閱讀l小時”為主題,對學(xué)生最喜愛的書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:

(1)請把折線統(tǒng)計圖(圖1)補(bǔ)充完整;

(2)如果這所中學(xué)共有學(xué)生900名,那么請你估算最喜愛科普類書籍的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案