【題目】如圖,直線y=kx+b與雙曲線(x﹤0)相交于A(-4,a)、B(-1,4)兩點(diǎn).
(1)求直線和雙曲線的解析式;
(2)在y軸上存在一點(diǎn)P,使得PA+PB的值最小,求點(diǎn)P的坐標(biāo).
【答案】(1)直線的解析式為y=x+5,雙曲線的解析式為;
(2)點(diǎn)P的坐標(biāo)為.
【解析】根據(jù)一次函數(shù)和反比例函數(shù)的解析式求出點(diǎn)A、B的坐標(biāo),然后作出點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)C,連接BC,與y軸的交點(diǎn)即為點(diǎn)P,然后求出直線BC的解析式,求出點(diǎn)P的坐標(biāo).
(1)y=x+5, ;
(2)作點(diǎn)B關(guān)于y軸的對(duì)稱點(diǎn)C(1,4),連接AC交y軸于點(diǎn)P.
易求得,令x=0,得,∴P.
“點(diǎn)睛”本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,涉及了待定系數(shù)法求函數(shù)解析式、軸對(duì)稱、最短路線問題,解答本題的關(guān)鍵是把兩個(gè)函數(shù)關(guān)系式聯(lián)立成方程組求出交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)某體育用品專賣店銷售7個(gè)籃球和9個(gè)排球的總利潤(rùn)為355元,銷售10個(gè)籃球和20個(gè)排球的總利潤(rùn)為650元.
(1)求每個(gè)籃球和每個(gè)排球的銷售利潤(rùn);
(2)已知每個(gè)籃球的進(jìn)價(jià)為200元,每個(gè)排球的進(jìn)價(jià)為160元,若該專賣店計(jì)劃用不超過17400元購(gòu)進(jìn)籃球和排球共100個(gè),且要求籃球數(shù)量不少于排球數(shù)量的一半,請(qǐng)你為專賣店設(shè)計(jì)符合要求的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下利事件中,是隨機(jī)事件的是( )
A.通常溫度降到0℃以下,純凈的水結(jié)冰
B.明天太陽(yáng)從東邊升起
C.購(gòu)買一張彩票,中獎(jiǎng)
D.任意畫一個(gè)三角形,其內(nèi)角和為360°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,M、N分別為BC、CD的中點(diǎn),AM=1,AN=2,∠MAN=60°則AB的長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若△ABC∽△DEF,相似比為4:3,則△ABC與△DEF對(duì)應(yīng)的中線之比為( 。
A.4:3B.3:4C.16:9D.9:16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營(yíng)養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對(duì)不同口味牛奶的喜好,對(duì)全校訂購(gòu)牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:
(1)本次被調(diào)查的學(xué)生有 名;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購(gòu)了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購(gòu)牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=10,點(diǎn)D , E , F分別是AB , BC , AC的中點(diǎn),則四邊形ADEF的周長(zhǎng)為( ).
A.16
B.12
C.10
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
已知:如圖,四邊形ABCD是平行四邊形
求作:菱形AECF,使E,F(xiàn)分別在BC,AAD上
小凱的作法如下:
⑴連接AC
⑵作AC的垂直平分線EF分別交BC,AD于E,F(xiàn)
⑶連接AE,CF
所以四邊形AECF是菱形
老師說:“小凱的作法正確.”
請(qǐng)回答:在小凱的作法中,判定四邊形AECF是菱形的依據(jù)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同一平面內(nèi)的兩條線段,下列說法正確的是( )
A. 一定平行
B. 一定相交
C. 可以既不平行又不相交
D. 不平行就相交
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com