如圖,AB是圓O的直徑,AD、BC垂直于AB,AD=13,BC=16,DC=5,點(diǎn)P是動(dòng)點(diǎn),點(diǎn)P以1cm/s的速度由A向D運(yùn)動(dòng),同時(shí)Q從C向B以2cm/s的速度運(yùn)動(dòng),當(dāng)一點(diǎn)到達(dá)時(shí)時(shí),另一點(diǎn)同時(shí)停止運(yùn)動(dòng).
(1)當(dāng)P從A向Q運(yùn)動(dòng)t秒時(shí),四邊形PQCD的面積S與t的關(guān)系式.
(2)是否存在時(shí)間t,使得梯形PQCD是等腰梯形?若存在求出時(shí)間t,不存在說(shuō)明理由.
分析:(1)過(guò)點(diǎn)D作DE⊥BC于E,則四邊形ABED是矩形,AB=ED,所以求出DE,就求出了圓的直徑AB,要求四邊形PQCD的面積,只需用t表達(dá)出CQ和PD.
(2)當(dāng)四邊形PQCD為等腰梯形時(shí),CQ'-P'D=2CE,即2t-(13-t)=6,即可求出t的值.
解答:解:(1)過(guò)點(diǎn)D作DE⊥BC于E,

∵AB⊥BC,∴四邊形ADEB為矩形,
∴BE=AD=13,EC=3.
又∵CD=5,
∴DE=
DC2-CE2
=4cm,
當(dāng)P、Q運(yùn)動(dòng)t秒時(shí),AP=t,CQ=2t,PD=AD-AP=(13-t),
則S=
1
2
(13-t+2t)×4,即y=2t+26(0≤t≤8);

(2)當(dāng)四邊形PQCD為等腰梯形時(shí),過(guò)P作PF⊥BC于F,如圖:
,
則有Q'F=CE=3.
即CQ'-P'D=Q'F+CE,即2t-(13-t)=6,
解得:t=
19
3

即當(dāng)t=
19
3
時(shí),梯形PQCD是等腰梯形.
點(diǎn)評(píng):本題考查了圓的綜合題及等腰梯形的性質(zhì),解答本題的關(guān)鍵是用含t的式子表示出各線段的長(zhǎng)度,另外要求我們熟練掌握等腰梯形的性質(zhì),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-
3
3
x+2與y軸的交點(diǎn)A和點(diǎn)M(-
3
2
,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的精英家教網(wǎng)四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》中考題集(38):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第27章《二次函數(shù)》中考題集(37):27.3 實(shí)踐與探索(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年四川省眉山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•眉山)如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案