【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當(dāng)BC=4時(shí),求劣弧AC的長(zhǎng).

【答案】
(1)解:∵∠ABC與∠D都是弧AC所對(duì)的圓周角,

∴∠ABC=∠D=60°


(2)解:∵AB是⊙O的直徑,

∴∠ACB=90°.

∴∠BAC=30°,

∴∠BAE=∠BAC+∠EAC=30°+60°=90°,

即BA⊥AE,

∴AE是⊙O的切線


(3)解:如圖,連接OC,

∵∠ABC=60°,

∴∠AOC=120°,

∴劣弧AC的長(zhǎng)為


【解析】(1)由圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,即可求得∠ABC的度數(shù);(2)由AB是⊙O的直徑,根據(jù)半圓(或直徑)所對(duì)的圓周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,則可得AE是⊙O的切線;(3)首先連接OC,易得△OBC是等邊三角形,則可得∠AOC=120°,由弧長(zhǎng)公式,即可求得劣弧AC的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有三張正面分別標(biāo)有數(shù)字:﹣1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中抽出一張記下數(shù)字,放回洗勻后再?gòu)闹须S機(jī)抽出一張記下數(shù)字.
(1)請(qǐng)用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結(jié)果;
(2)將第一次抽出的數(shù)字作為點(diǎn)的橫坐標(biāo)x,第二次抽出的數(shù)字作為點(diǎn)的縱坐標(biāo)y,求點(diǎn)(x,y)落在雙曲線y= 上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分在東營(yíng)市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過市場(chǎng)考察得知,購(gòu)買1臺(tái)電腦和2臺(tái)電子白板需要35萬(wàn)元,購(gòu)買2臺(tái)電腦和1臺(tái)電子白板需要25萬(wàn)元

1求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?

2根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過30萬(wàn)元,但不低于28萬(wàn)元,請(qǐng)你通過計(jì)算求出有幾種購(gòu)買方案,哪種方案費(fèi)用最低

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在股市交易中,每買、賣一次需付交易款的千分之七點(diǎn)五作為交易費(fèi)用,某投資者以每股10元的價(jià)格買入某股票1 000股,下表為第一周內(nèi)每日該股票的漲跌情況(單位:元).

星期

每股漲跌

+2

+1.5

-0.5

-4.5

+2.5

(1)星期三收盤時(shí),每股是多少元?

(2)本周內(nèi)每股最高價(jià)是多少元?最低價(jià)是多少元?

(3)若該投資者在星期五收盤前將股票全部賣出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩組卡片共5張,A中三張分別寫有數(shù)字2,4,6,B中兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別.
(1)隨機(jī)地從A中抽取一張,求抽到數(shù)字為2的概率;
(2)隨機(jī)地分別從A、B中各抽取一張,請(qǐng)你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?
(3)如果不公平請(qǐng)你修改游戲規(guī)則使游戲規(guī)則對(duì)甲乙雙方公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖長(zhǎng)方形MNPQ是菜市民健身廣場(chǎng)的平面示意圖,它是由6個(gè)正方形拼成的長(zhǎng)方形,中間最小的正方形A的邊長(zhǎng)是1,觀察圖形特點(diǎn)可知長(zhǎng)方形相對(duì)的兩邊是相等的(如圖中MN=PQ).正方形四邊相等.請(qǐng)根據(jù)這個(gè)等量關(guān)系,試計(jì)算長(zhǎng)方形MNPQ的面積,結(jié)果為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知關(guān)于x的方程kx=11﹣2x有整數(shù)解,則負(fù)整數(shù)k的值為   

(2)若a+b+c=0,且abc,以下結(jié)論:

a>0,c>0;

②關(guān)于x的方程ax+b+c=0的解為x=1;

a2=(b+c2;

的值為02;

⑤在數(shù)軸上點(diǎn)A、B、C表示數(shù)a、b、c,若b<0,則線段AB與線段BC的大小關(guān)系是ABBC

其中正確的結(jié)論是   (填寫正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形OABC的邊長(zhǎng)為4,對(duì)角線相交于點(diǎn)P,拋物線L經(jīng)過O、P、A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn).

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,
①直接寫出O、P、A三點(diǎn)坐標(biāo);
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)在平面直角坐標(biāo)系中,四邊形OBCD是正方形,且D(0,2),點(diǎn)E是線段OB延長(zhǎng)線上一點(diǎn),M是線段OB上一動(dòng)點(diǎn)(不包括O、B),做MNDM,垂足為M,交∠CBE的平分線于點(diǎn)N.

(1)求點(diǎn)C的坐標(biāo);

(2)求證:MD=MN;

(3)如圖(2),連接DNBCF,連接FM,探究線段MF、CF、OM之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.

圖(1) 圖(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案