如圖,⊙O的直徑AB垂直于弦CD,垂足為H,點P是弧AC上的一點(點P不與A,C重合),連結(jié)PC,PD,PA,AD,點E在AP的延長線上,PD與AB交于點F.給出下列四個結(jié)論:①CH2=AH·BH;②弧AD=弧AC;③AD2=DF·DP;④∠EPC=∠APD.
其中正確的個數(shù)有

A.1個    B.2個     C.3個    D.4個

C

解析試題分析:連接AC、BC;⊙O的直徑AB垂直于弦CD,垂足為H,,,所以,因此可得,所以在,所以CH2=AH·BH,①正確;⊙O的直徑AB垂直于弦CD,垂足為H,根據(jù)弦心矩的性質(zhì),所以弧AD=弧AC,②正確;如圖,⊙O的直徑AB垂直于弦CD,垂足為H,點P是弧AC上的一點(點P不與A,C重合),連結(jié)PC,PD,PA,AD,點E在AP的延長線上,PD與AB交于點F,可證
,所以AD2=DF·DP,因此③正確;由②知弧AD=弧AC,所以,是弧AD所對的圓周角,所以,因此,根據(jù)題意,而分別是弧PC,弧AC所對的圓周角,因為弧PC小于弧AC,所以,因此,所以④錯誤
考點:弦心距,相似三角形
點評:本題考查弦心距,相似三角形,解本題需要掌握弦心距的性質(zhì),熟悉相似三角形的判定方法,會證明兩個三角形相似

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長線相交于點F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點,過點B作BF∥CD交AD的延長線于
點F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點,連PC,PA,PD,PB,下列結(jié)論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長;
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點,CD=6cm,則直徑AB的長是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習(xí)冊答案