(2005•武漢)如圖,外切于P點(diǎn)的⊙O1和⊙O2是半徑為3cm的等圓,連心線交⊙O1于點(diǎn)A,交⊙O2于點(diǎn)B,AC與⊙O2相切于點(diǎn)C,連接PC,則PC的長(zhǎng)為( )
A.cm
B.cm
C.3cm
D.4.5cm
【答案】分析:利用切線的概念,直徑對(duì)的圓周角是直角,平行線的判定和性質(zhì),勾股定理求解.
解答:解:連接O2C,PH,AP是直徑,
則∠AHP=90°,
由切線的概念知,∠O2CA=90°;
∴PH∥O2C,
由勾股定理得,AC=6
∵HP:O2C=AP:O2A,
∴HP=2,
由勾股定理得,AH=4,HC=AC-AH=2,
在直角三角形PHC中,由勾股定理得,PC=2
故選A.
點(diǎn)評(píng):本題考查了切線的性質(zhì)和勾股定理的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標(biāo)系中,點(diǎn)O1的坐標(biāo)為(-4,0),以點(diǎn)O1為圓心,8為半徑的圓與x軸交于A、B兩點(diǎn),過(guò)點(diǎn)A作直線l與x軸負(fù)方向相交成60°角.以點(diǎn)O2(13,5)為圓心的圓與x軸相切于點(diǎn)D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個(gè)單位的速度沿x軸向左平移,同時(shí)直線l沿x軸向右平移,當(dāng)⊙O2第一次與⊙O1相切時(shí),直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過(guò)程中與x軸相切于點(diǎn)E,EG為⊙O2的直徑,過(guò)點(diǎn)A作⊙O2的切線,切⊙O2于另一點(diǎn)F,連接AO2、FG,那么FG•AO2的值是否會(huì)發(fā)生變化?如果不變,說(shuō)明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2005•武漢)如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系.y軸是拋物線的對(duì)稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)雙行道,現(xiàn)有一輛貨運(yùn)卡車高4.2m,寬2.4米,這輛貨運(yùn)卡車能否通過(guò)該隧道?通過(guò)計(jì)算說(shuō)明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年文星鎮(zhèn)中考模擬試卷(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標(biāo)系中,點(diǎn)O1的坐標(biāo)為(-4,0),以點(diǎn)O1為圓心,8為半徑的圓與x軸交于A、B兩點(diǎn),過(guò)點(diǎn)A作直線l與x軸負(fù)方向相交成60°角.以點(diǎn)O2(13,5)為圓心的圓與x軸相切于點(diǎn)D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個(gè)單位的速度沿x軸向左平移,同時(shí)直線l沿x軸向右平移,當(dāng)⊙O2第一次與⊙O1相切時(shí),直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過(guò)程中與x軸相切于點(diǎn)E,EG為⊙O2的直徑,過(guò)點(diǎn)A作⊙O2的切線,切⊙O2于另一點(diǎn)F,連接AO2、FG,那么FG•AO2的值是否會(huì)發(fā)生變化?如果不變,說(shuō)明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年湖北省武漢市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•武漢)如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系.y軸是拋物線的對(duì)稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)雙行道,現(xiàn)有一輛貨運(yùn)卡車高4.2m,寬2.4米,這輛貨運(yùn)卡車能否通過(guò)該隧道?通過(guò)計(jì)算說(shuō)明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年湖北省武漢市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標(biāo)系中,點(diǎn)O1的坐標(biāo)為(-4,0),以點(diǎn)O1為圓心,8為半徑的圓與x軸交于A、B兩點(diǎn),過(guò)點(diǎn)A作直線l與x軸負(fù)方向相交成60°角.以點(diǎn)O2(13,5)為圓心的圓與x軸相切于點(diǎn)D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個(gè)單位的速度沿x軸向左平移,同時(shí)直線l沿x軸向右平移,當(dāng)⊙O2第一次與⊙O1相切時(shí),直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過(guò)程中與x軸相切于點(diǎn)E,EG為⊙O2的直徑,過(guò)點(diǎn)A作⊙O2的切線,切⊙O2于另一點(diǎn)F,連接AO2、FG,那么FG•AO2的值是否會(huì)發(fā)生變化?如果不變,說(shuō)明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案