如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.
(1)求證:∠DAF=∠CDE;
(2)問△ADF與△DEC相似嗎?為什么?
(3)若AB=4,AD=3,AE=3,求AF的長.

【答案】分析:(1)先根據(jù)四邊形ABCD是平行四邊形,得出AD∥BC,∠B=∠ADC,再由∠AFE=∠B可得出∠AFE=∠ADC,通過等量代換可得出∠DAF=∠CDE;
(2)由四邊形ABCD是平行四邊形,可得出AD∥BC,AB∥CD,∠ADE=∠CED,∠B+∠C=180°,再由∠AFE=∠B,可得出∠AFD=∠C,故可得出結(jié)論;
(3)先由四邊形ABCD是平行四邊形,可得出AD∥BC,CD=AB=4,再由AE⊥BC,得出AE⊥AD,由勾股定理求出DE的長,由△ADF∽△DEC可得出兩三角形的邊對應成比例,進而可得出AF的長.
解答:證明:(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC,∠B=∠ADC,
∴∠ADE=∠DEC,
∵∠AFE=∠B,
∴∠AFE=∠ADC,
∵∠AFD=180°-∠AFE,∠C=180°-∠ADC,
∴∠AFD=∠C,
∴∠DAF=∠CDE;

(2)解:△ADF∽△DEC.
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠ADE=∠CED,∠B+∠C=180°,
∵∠AFE+∠AFD=180°,∠AFE=∠B,
∴∠AFD=∠C,
∴△ADF∽△DEC;

(3)解:∵四邊形ABCD是平行四邊形,
∴AD∥BC  CD=AB=4,
又∵AE⊥BC,
∴AE⊥AD,
在Rt△ADE中,DE===6
∵△ADF∽△DEC,
=,
=
∴AF=2
點評:本題考查的是相似三角形的判定與性質(zhì),勾股定理及平行四邊形的性質(zhì),此題有一定的綜合性,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
AO=
3
,OB=
5
,則下列結(jié)論中不正確的是(  )
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習冊答案